
Enhancing Neural Network Robustness via
Synthesis of Repair Programs

Tom Yuviler[0009−0008−7952−8292] and Dana
Drachsler-Cohen[0000−0001−6644−5377]

Technion, Haifa, Israel {tom.yuviler@campus,ddana@ee}.technion.ac.il

Abstract. Adversarial examples undermine the reliability of neural net-
works. To defend against attacks, multiple approaches have been pro-
posed. However, many of them introduce high training overhead or high
inference overhead, some significantly decrease the network’s accuracy or
insufficiently increase the network’s robustness, and others do not scale
to deep networks. To mitigate all these shortcomings, we propose a new
form of defense: optimal program synthesis of short repair programs, in-
tegrated into a trained network. A repair program modifies a few neurons
by using a few other neurons. The challenge is to identify the most suc-
cessful combination of neurons to enhance the network’s robustness while
maintaining high accuracy. We introduce DefEnSyn, a stochastic synthe-
sizer of repair programs. To cope with the exponential number of neuron
combinations, DefEnSyn learns the effective combinations by synthesizing
repair programs of increasing length. We evaluate DefEnSyn on classifiers
for ImageNet and CIFAR-10 and show it enhances the robustness of net-
works to L∞-, L2-, and L0- black-box adversarial example attacks and
to backdoor attacks. DefEnSyn’s repair programs enhance the networks’
robustness on average by +40% and up to +71%. DefEnSyn decreases the
network’s accuracy by only ≈ −1%. We demonstrate that DefEnSyn out-
performs existing state-of-the-art defenses based on adversarial training,
randomization, and repair, in both robustness and accuracy.

Keywords: Neural Network Robustness · Program Synthesis.

1 Introduction

Despite the immense success of neural networks, their reliability is still an open
challenge due to their vulnerability to various kinds of attacks. One of the
widely studied attacks is the adversarial example attack, where an adversary
computes a small perturbation that causes the network to predict the wrong
output [26,36,73,4,84,50,11,71]. When the attacked network is an image clas-
sifier, the attacker typically aims at generating an imperceptible perturbation.
Formally, the attacker computes a perturbation whose magnitude is smaller than
a predefined small threshold, where the magnitude is measured with respect to
a given p-norm, such as L∞ [26,50], L2 [11,4], L1 [17,12], or L0 [71,16]. These



2 T. Yuviler, D. Drachsler-Cohen

Table 1. Adversarial defenses: advantages and disadvantages (yes ✓, partly ✓—, no ×).

High clean
accuracy

High robust
accuracy

Scalability for
large networks

Low training
overhead

Low inference
overhead

Adv. training ✓ ✓ ✓ × ✓
Randomization ✓— ✓ ✓ ✓— ✓—
Repair ✓ ✓— ✓— ✓— ✓
DefEnSyn (ours) ✓ ✓ ✓ ✓— ✓

adversarial examples raise concerns about deploying AI in safety-critical appli-
cations, leading to new regulations by the European Union [22] and guidelines
for secure AI system development by the NSA [54].

To mitigate adversarial attacks, many adversarial defenses have been pro-
posed. An adversarial defense aims to make a network more robust to adver-
sarial attacks without significantly decreasing the network’s accuracy. This is
commonly obtained by modifying the network’s computations or the input to
the network during training or inference. Existing adversarial defenses are thus
required to carefully balance all these conflicting goals: high accuracy on unper-
turbed inputs (called clean accuracy), high accuracy on adversarially perturbed
inputs (called robust accuracy), low training overhead, low inference overhead,
and scaling to large networks. This has led to three kinds of defenses: adversarial
training, randomization, and post-training repair (repair for short). Adversarial
training alters the training to consider adversarial examples [66,64,79,50,36,1].
Often, these defenses obtain high clean accuracy and high robust accuracy (with
respect to the given attack types). However, they introduce significant overhead
in computational resources and training time (e.g., several days). This overhead
becomes significant when newly discovered attacks necessitate repeated retrain-
ing of the network to enhance its robustness. Randomization adds stochastic
noise to the input [62,82,9,15,10,53,39] or to the network’s computations [45,37].
While randomization defenses have a lighter training overhead than adversarial
training, they tend to decrease the network’s clean accuracy and still intro-
duce some time overhead during both training and inference. Repair techniques
introduce post-training modifications to the neural network, like parameter ad-
justments [77,74,72,67,49] or architectural modifications [38,70,23]. Most repair
techniques do not aim to defend against adversarial examples but rather repair
benign misclassifications [49,74,67,70,23] or enforce specifications, e.g., linear
constraints over the network’s output [38]. However, repair has also been pro-
posed for adversarial defense [77]. Its main disadvantage is that it often relies
on expensive analysis, which does not scale to large networks. There are two
exceptions [74,70], but they focus on provable repair, which becomes infeasible
when the number of inputs required to be defended is more than a few hundred.
Table 1 summarizes the advantages and disadvantages of the defense types.

We propose a novel form of defense: optimal program synthesis [51,13,8] of
short repair programs, integrated into a trained network, that enhance robust-



Enhancing Neural Network Robustness via Synthesis of Repair Programs 3

Fig. 1. Illustration of DefEnSyn, an adversarial defense via optimal program synthesis.

ness with a minimal decrease in the clean accuracy. Program synthesis relies on
training, enabling us to look for a repair that maximizes both the robust and
clean accuracies. It is also commonly restricted to a short solution, enabling us
to lower the training and inference overhead. To scale to deep networks, a re-
pair program is integrated into a trained network between the network’s encoder
and classifier (illustrated by Figure 1). The encoder consists of the first layers,
transforming an input into a lower-dimensional feature vector, and the classifier
consists of the other layers, mapping the feature vector to a probability vector
over the classes. Defending a network by modifying the network’s extracted fea-
tures has been shown to be successful [83,41]. Our repair programs modify the
values of a few neurons using a few other neurons. This idea builds on the obser-
vation that certain parts of neural networks act as program modules and can be
recomposed to achieve a task without retraining [55,58]. Our defense has several
advantages: (1) it is applicable to any network architecture and does not make
any assumptions about its layer types, (2) it is computed after the network has
been trained, and (3) during synthesis, evaluating candidate programs requires
only the classifier part, keeping the synthesis overhead relatively low, even for
deep networks. Our focus is optimal program synthesis since the goal of adver-
sarial defense is to maximize the clean and robust accuracies on a given training
set. This is different from provable repair [74,70], which looks for a repair with
perfect accuracy on the training set and fails if there is none. Naturally, for large
training sets (more than a few hundred), provable repair fails more often.

Computing a repair program that maximizes the clean and robust accuracies
is highly challenging. First, it requires identifying the best neurons to include
in the repair program (on the left-hand side and the right-hand side of its in-
structions) out of an exponential number of possibilities. The challenge is that
neurons are not standard program variables but rather functions over the net-
work’s inputs, and some of them are correlated. Second, there is no monotonic-
ity between the effectiveness of a program and programs that extend it. Thus,



4 T. Yuviler, D. Drachsler-Cohen

greedy synthesis, iteratively generating the next best instruction, is unsuitable.
Third, stochastic synthesis that samples full programs (e.g., [60,21]) requires an
infeasible number of samples to converge. To illustrate, if there are 100 neurons
and the repair program can have up to ten instructions, only checking a single
program for each possibility of repaired neurons requires 1013 samples. Even if
evaluating a single sample takes one millisecond, this basic sampling requires
over 300 years. To the best of our knowledge, choosing a small set of variables
out of a large set of correlated variables is a new challenge in program synthesis.

We introduce DefEnSyn, a synthesizer that computes a set of repair programs.
It relies on two ideas. First, to cope with the exponential number of possibilities,
it learns the effectiveness of each neuron separately (not as part of sets). Second,
although there is no monotonicity between programs and their extensions, it uses
short programs, whose search space is smaller, as guidance towards the effective
neurons in longer programs. Technically, it learns two distributions over the
neurons, for the left-hand side of the instructions (the repaired neurons), and
for the right-hand side (the repairing neurons). To this end, it iterates over
program lengths from 1 to k. For each, it samples full programs based on the
distributions learned by previous iterations. It updates these distributions by
the average accuracies of candidate programs. This sampling method helps it
to identify the more suitable neurons for repair when sampling programs of
length k. Thus, it converges to effective repair programs with relatively few
samples (k · 106). Like randomization defenses, DefEnSyn leverages stochastic
noise: it computes a set of programs and, at inference, one program from the
set is randomly selected. Unlike randomization defenses, this form of stochastic
noise has negligible overhead, and it leads to a minor decrease in clean accuracy.

We evaluate DefEnSyn on ImageNet classifiers: ConvNeXt [48], DeiT [76],
ViT [20], and ResNet-18 [28], consisting of up to 22 million parameters. We con-
sider the more realistic black-box setting, where the attacker has no access to
the defended network and can only query it. DefEnSyn enhances the robustness
of networks against state-of-the-art L∞ adversarial attacks by +71%, against
L2 attacks by +15%, and against L0 attacks by +44%. This increase in robust
accuracy exceeds the increase of state-of-the-art adversarial training and ran-
domization defenses. DefEnSyn also outperforms repair defenses: it increases the
robust accuracy of a CIFAR-10 classifier against a backdoor attack [61,46,27] by
+27%, compared to +4% obtained by an existing repair [77]. In all experiments,
DefEnSyn slightly decreases the clean accuracy by about −1%, outperforming
existing defenses. It computes repair programs within a few hours, unlike adver-
sarial training, which requires several days. Integrating repair programs into the
network poses a negligible overhead during inference: less than 3 · 10−5 seconds.

In summary, our main contributions are:

– A post-training defense that integrates short repair programs into a network.
– A synthesizer of repair programs that identifies the best neurons for them.
– Extensive evaluation showing that our defense outperforms existing adver-

sarial training, randomization, and repair defenses.



Enhancing Neural Network Robustness via Synthesis of Repair Programs 5

2 Problem Definition

In this section, we define the problem of adversarial defense.

Neural Network Classifiers We focus on classifiers for images. An image is a
d1 × d2 matrix, consisting of RGB pixels in [0, 1]3. A classifier maps an image to
a score vector over the classes [c] = {1, . . . , c}, i.e., N : [0, 1]d1×d2×3 → Rc. The
classification of image x is the class with the highest score, c′ = argmax(N(x)).
We focus on classifiers implemented by neural networks. Neural networks pro-
cess data through a series of interconnected layers. Generally, a layer consists of
multiple neurons, where a neuron performs some computation (e.g., a weighted
sum of its inputs, followed by a non-linear activation function). The exact con-
nections between neurons and the definition of the weights are determined by
the network architecture. For example, in a fully connected network [44,75], neu-
rons between two adjacent layers are fully interconnected, and each connection
has a unique weight. Other architectures, shown to be highly effective for image
processing tasks, are Convolutional Neural Networks (CNNs) [35,65,28,48] and
Vision Transformers (ViTs) [20,47,76]. Since the definition of these architectures
is not required for understanding our paper, we omit their definition. The effec-
tiveness of a classifier is commonly defined by the clean accuracy. This is the
percentage of inputs, in a given data set D, that are correctly classified by N :

AccC(N, D) = 100 ·
∑

(xi,ci)∈D 1{argmax(N(xi)) = ci}
|D|

(1)

Attacks An adversarial example attack introduces a small perturbation to a cor-
rectly classified input image with the goal of misleading the classifier. Typically,
the magnitude of the perturbation is constrained with respect to a chosen norm,
such as L∞, L2, L1, or L0. Formally, given a perturbation bound ϵ and a p-norm,
an adversarial attack is a function A mapping a classifier N , a correctly classified
input x and its class cx to a perturbed image A(N, x, cx) = x′ ∈ [0, 1]d1×d2×3

such that ∥x − x′∥p ≤ ϵ. The attack succeeds if N classifies x′ not as cx (i.e.,
argmax(N(x′)) ̸= cx). This attack is called an untargeted attack. Our work can
also be extended to targeted attacks, where the goal is that N classifies x′ as
a target class ct ̸= cx. We note that constraining the attack’s perturbation by
a single norm is the most widely used attack model; however, there are attack
models constraining the perturbation by several norms [32,31,18]. We focus on
black-box attacks, where the attacker has no access to the network’s internals
and can only query the network to obtain the outputs of given inputs (specif-
ically, score-based attacks). This setting is more realistic [56,4,40,87], in partic-
ular for machine-learning-as-a-service (MLaaS) deployments, where users can
only submit queries to the network and observe its outputs (e.g., the scores).
Similar to prior work [30,14,40,52], we assume an attacker that adapts its attack
by querying the network multiple times. To evaluate the resilience of a classi-
fier against an adversarial attack, it is common to measure the robust accuracy



6 T. Yuviler, D. Drachsler-Cohen

[66,81,1,80,30,15]. The robust accuracy is the percentage of inputs, in a given
data set D, that are correctly classified by N when adversarially perturbed:

AccR(N, D) = 100 ·
∑

(xi,ci)∈D 1{argmax(N(A(N, xi, ci))) = ci}
|D|

(2)

Adversarial Defense An adversarial defense is an algorithm whose goal is to
increase the robust accuracy of a classifier while maximizing the clean accuracy.
Ideally, the goal would be to obtain perfect clean and robust accuracies on any
input and for any attack. However, this goal is infeasible for many reasons.
For example, some attacks are unknown and some inputs are on the decision
boundaries. Instead, the vast majority of adversarial defenses [10,66,39,77,1,15]
are given an adversarial attack A as well as training and test sets DT r, DT s for
evaluating the defended network. Note that A can be any adversarial attack
and can even combine multiple attacks. In this setting, the defense computes a
defended network given 2 · |DT r| requirements (two for each input: classifying
the input correctly and classifying its perturbed version by A correctly) and
evaluates the result by measuring the clean and robust accuracies on DT s. Since
these requirements are often conflicting, and since the space of defenses is highly
complex, it is common to look for a defense that maximizes the number of
satisfied requirements. Formally, an adversarial defense is defined as follows.

Definition 1 (A Defense). Given a classifier N : [0, 1]d1×d2×3 → Rc, a data
set of image-class pairs DT r ⊆ [0, 1]d1×d2×3 × [c], and an adversarial attack
A, a defense computes a defended network N ′ maximizing the robust and clean
accuracies AccR(N ′, DT r) + λ · AccC(N ′, DT r), where λ is a balancing factor.

3 Adversarial Defense by Repair Programs

In this section, we describe our defense by a set of repair programs.

Our Defense Our defense assumes a network that can be viewed as a composition
of an encoder and a classifier, i.e., N = C ◦ E. Intuitively, E extracts the input’s
features and passes a feature vector to C to compute the classification. We de-
note the number of extracted features by m. Formally, E : Rd1×d2×3 → Rm and
C : Rm → Rc. Most popular network architectures can be viewed as a compo-
sition of an encoder and a classifier, including fully connected networks, CNNs,
and ViTs. Our defense adds a repair program P between the encoder E and
classifier C, that is, the defended network is N ′ = C ◦ P ◦ E. Repair programs
are short, and each of their instructions modifies a single entry of the feature
vector. Integrating a program into the network is similar to adding a layer to
the network, but the program supports more complex computations (e.g., piece-
wise polynomial functions). Integrating a repairing layer has been proposed [38];
however, only for enforcing linear constraints over the output vector, which can-
not express the requirements of clean and robust accuracy. Other defenses that
repair a single layer modify an existing layer [41,77,25]. While both our approach



Enhancing Neural Network Robustness via Synthesis of Repair Programs 7

Fig. 2. The median absolute change (%) of every feature of a CIFAR-10 Wide-ResNet
classifier following the L0 Pixle attack. Most features are slightly changed.

Fig. 3. Left: The median absolute change (%) of the first ten features of a CIFAR-10
Wide-ResNet classifier following the L∞ Square attack. Right: The pairwise Pearson-
correlation matrix of these features (computed on clean inputs).

and existing repairs are post-training, our approach is a new form of defense:
unlike existing repairs, it does not modify the network parameters or manipulate
the network’s output. Instead, it synthesizes a program, over a (restricted) pro-
gramming language, which is added between the network’s layers. This difference
is similar to the difference between program repair and program synthesis.

Advantages There are several advantages to repairing the input of the network’s
classifier part. First, its input dimension tends to be smaller than the input
dimensions of previous layers, which reduces the search space of the repair. Sec-
ond, adversarial attacks tend to change a small subset of these latent features
(as demonstrated in Figure 2); thus, identifying and modifying them can miti-
gate the attack. Third, due to redundancy, features tend to have strong linear
correlations with some of the other features [5,6]. This suggests that we can in-
crease the network’s robustness without significantly changing its computation
by replacing the output of vulnerable features with a linear combination of ro-
bust features that have strong correlation with them. To illustrate, we consider
a CIFAR-10 [34] classifier and compute the maximal change of its features as
a result of the Square attack [4]. Figure 3 (left) shows this change for the first
ten features (in total there are m = 256 features), where feature 4 is one of the



8 T. Yuviler, D. Drachsler-Cohen

top-10 features exhibiting the maximal absolute change. Figure 3 (right) shows
the correlation between the first ten features. Features 4 and 8 have a strong neg-
ative linear correlation (whereas feature 4 has a lower correlation with the other
features). This suggests that replacing the 4th feature (heavily affected by the
adversarial attack) with the 8th feature (less affected by the attack) multiplied
by a negative constant could mitigate the attack’s impact without significantly
changing the classifier’s computation. Fourth, the synthesis of repair programs
does not involve repeatedly running inputs through the full network, but only
through the repair program and the classifier part. This reduces the synthesis
overhead. Lastly, short repair programs introduce low inference overhead.

Randomization Our defense benefits from randomization without its costs (time
overhead and clean accuracy decrease). The motivation for adding randomization
is that it challenges attackers in crafting their adversarial examples: despite the
black-box access to the network, a fixed defense is known to be more vulnerable,
especially if the attacker can pose an unlimited number of queries [82,29]. Thus,
our defense generates a set of repair programs and at inference, upon every
input, randomly selects a program, adds it between the encoder and classifier,
and propagates the input through this defended network. This form of stochastic
noise enhances the network’s robustness with very low overhead, since it only
picks one of K programs. Moreover, due to the synthesis, the generated set of
repair programs introduces a minor decrease in clean accuracy.

Program Space Our program search space is inspired by fully connected layers.
A repair program repairs features (i.e., entries of the feature vector) using arith-
metic expressions of (usually other) features. The expressions include standard
arithmetic operations (e.g., addition, multiplication), generalizing the weighted
sum computed by fully connected layers, and piecewise linear functions (mini-
mum and maximum), generalizing the popular, piecewise linear ReLU activation
function [2]. Figure 4 presents the grammar of our repair programs. A repair pro-
gram P is a sequence of assignment instructions. An assignment A assigns a data
element or an operation over two data elements to an entry vi of the feature vec-
tor (i ∈ [m]). A data element d is a real number r or a feature vi. An operation
Op is an arithmetic operation (addition, subtraction, multiplication, or division)
or a comparative function (the minimum or maximum of two data elements).
The semantics of repair programs is as expected, except that if a division by
zero occurs when running a program, the effect of the respective instruction is
removed (i.e., the program runs as if this instruction does not exist).

Example The program: v3 = v100 + 3.267; v136 = v2 / v51; v121 = -3.761 has
been synthesized for the CIFAR-10 [34] Wide-ResNet-34-10 [85] classifier against
the L2 Square attack [4]. It repairs the 3rd, 136th, and 121st entries of the feature
vector. The 3rd feature is the sum of the 100th feature and a constant. The 136th

feature is the division of the 2nd and 51st features. The 121st feature is set to a
constant. All other features are unchanged. Figure 1 shows two more examples.



Enhancing Neural Network Robustness via Synthesis of Repair Programs 9

(Program) P ::= A | P1; P2
(Assignment) A ::= vi = d | vi = Op (d1, d2)

(Operation) Op ::= add | sub | mul | div | max | min
(Data Element) d ::= vi | r

(Variable) vi ∈ {v1, v2, . . . , vm}
(Constant) r ∈ R

Fig. 4. The domain-specific language of our repair programs.

4 DefEnSyn: A Program Synthesizer of Repair Programs

In this section, we present DefEnSyn (Defending by Enumerative Stochastic
Synthesis), our synthesizer for computing a set of repair programs as an ad-
versarial defense. We begin by discussing the challenge and our idea. We then
explain how DefEnSyn computes a set of programs. Lastly, we show its algorithm.

Challenge The goal of DefEnSyn is to compute effective repair programs. Given
a network N = C ◦ E and a training set DT r, the effectiveness of a program P
is the weighted sum of the clean and robust accuracies of the defended network:
score(P ) = AccR(C ◦P ◦E, DT r)+λ·AccC(C ◦P ◦E, DT r). The higher the score,
the more effective the program. Since our program space consists of a small num-
ber of operators and since searching for constants in arithmetic expressions over
given variables is amenable to efficient search procedures (discrete or numerical
optimization), we view the main challenge in our program space as selecting the
best features to use as variables. The challenge is intensified in our setting for
several reasons. First, the features are not standard input variables but rather
functions over the network’s inputs and some are correlated (Figure 3), which
complicates the task of identifying the most suitable features (unlike standard
variables which are commonly independent). Further, there is a large set of fea-
tures (several hundred), which makes this task even more complex. Third, there
is no monotonicity between a program’s score and the scores of programs that
subsume it, which would provide a partial order on the program space and could
enable pruning. To the best of our knowledge, identifying an effective small sub-
set of input variables out of a large set of variables, which some are correlated,
without a partial order over the programs is a new challenge in program syn-
thesis. To illustrate our problem’s complexity, assume a limited program space
consisting only of feature assignments vi1 = vj1 ;. . . ; vik

= vjk
. Assume that

the feature vector dimension is m = 100 (in our experiments, m ∈ [256, 512]),
and that it takes one millisecond to compute a program’s score. It would take
about 300 days to enumerate all programs of length three (DefEnSyn looks for
programs up to length ten). One may consider, as an alternative, stochastic syn-
thesis which learns a distribution over (full) programs to converge to an effective
one (e.g., [60,21]). However, even if we check a single program for every possible
left-hand side (i.e., without even searching for effective right-hand side expres-
sions), we would need 1013 samples for program length ten, which is infeasible.



10 T. Yuviler, D. Drachsler-Cohen

Key Idea Our key idea is to employ stochastic search to learn the best set of
features (as opposed to stochastic synthesis, which learns programs). To cope
with the exponential number of possibilities, we learn for each feature separately
how effective it is as a repaired feature and as a repairing feature. That is, we
learn two distributions, each over all m features. We consider the dependencies
between the features by (1) defining the effectiveness of a feature to be the av-
erage scores of repair programs that include it, and (2) considering programs
of increasing lengths, from 1 to k. The ascending program lengths enable us to
approximate the effectiveness of a set of features in smaller search spaces. For
the sake of explanation, ignore the constants in our language, and assume there
are m = 100 features and that k = 10. In programs of length one, the program
space is relatively small: m · (m + 6 · m2) = 6,010,000 (i.e., the number of pos-
sibilities for the left-hand side multiplied by the number of possibilities for the
right-hand side, consisting of a single variable or one of our six operators with
two operands). Even if we consider constants, 106 samples provide good coverage
of the programs of length one. Although these programs do not capture depen-
dency between features, we can use the sampled programs’ scores to identify
effective features for the repair. In programs of length two, the search space is
larger: ≈ 6,010,0002 – sampling 106 programs covers only 10−6% of the program
space. However, if our sampling is biased towards features that are more promis-
ing for programs of length one, the search explores programs containing them
more frequently. Since there is no monotonicity, some of these promising features
may be included in programs with higher scores, while others in programs with
lower scores. Accordingly, the learned distributions are updated. Generally, for
length i, we sample full programs of length i where the variables are chosen by
the learned distributions of the previous program lengths and update the dis-
tributions based on these programs’ scores. While there is no monotonicity, if a
feature is effective for multiple program lengths, it may hint that this feature is
effective in longer programs. Thus, when we sample programs of length k, we
have a good approximation of the better features for the repair. Consequently,
even if we sample a very low number of programs (106 is less than 10−62% of
the programs of length 10), we can identify effective programs.

Computing a Set of Programs Recall that our defense leverages randomization
to enhance robustness and thus DefEnSyn generates a set of repair programs. If
the synthesized programs are very similar, the randomization would have little
effect. Thus, naively returning the K highest-scored programs would be less
effective. Instead, DefEnSyn forces diversity in the set of programs by requiring
that each program has a different set of repaired features. Our diversity definition
ignores the right-hand side expressions, including the repairing features, since it
may lead to programs with identical repaired features, which will be easier for
the attacker to exploit. To compute this set of programs, DefEnSyn maintains
a dictionary whose keys are sets of repaired features, and the entry for a key is
the highest-scored program for this set of repaired features and its score. At the
end, DefEnSyn returns the K highest-scored repair programs in this dictionary.



Enhancing Neural Network Robustness via Synthesis of Repair Programs 11

Algorithm 1: DefEnSyn (E, C, DT r, A)
Input : Encoder E, classifier C, training set DT r, adversarial attack A.
Output: A set of repair programs P.

1 features = [E(xi) | (xi, ci) ∈ DT r]
2 adv_features = [E(A(C ◦ E, xi, ci)) | (xi, ci) ∈ DT r]
3 class = [ci | (xi, ci) ∈ DT r]
4 progs = {} // The dictionary for the repair programs
5 SL = 0; SR = 0 // The average scores of LHS/RHS variables
6 SL = 0; SR = 0 // The sum of scores of LHS/RHS variables
7 ZL = 0; ZR = 0 // The number of occurrences of LHS/RHS variables
8 DistLHS = softmax(SL); DistRHS = softmax(SR) // The distributions
9 prev = 0 // The sum of the top-K scores

10 for prog_length = 1 to MAX_NUM_ASSIGNMENTS do
11 for i = 1 to MAX_ITER_PER_LENGTH do
12 P = [] // Init a new program
13 for length = 1 to prog_length do
14 P .append(generate_random_assignment(DistLHS , DistRHS))
15 score = 0 // Init the program’s score
16 for j = 1 to |DT r| do
17 if argmax(C ◦ P (adv_features[j])) == class[j] then score+ =1

18 if argmax(C ◦ P (features[j])) == class[j] then score + = λ

19 lhs_v, rhs_v = extract_vars(P )
20 for i = 1 to m do
21 if vi ∈ lhs_v then SL[i] + = score; ZL[i] + = 1
22 if vi ∈ rhs_v then SR[i] + = score; ZR[i] + = 1
23 SL[i] = SL[i]/ZL[i]; SR[i] = SR[i]/ZR[i]
24 if lhs_v not in progs.keys() or progs[lhs_v].score < score then
25 progs[lhs_v] = (P, score)

26 DistLHS = softmax(SL); DistRHS = softmax(SR)
27 curr = Σscore∈topK(progs)score
28 if prog_length > 1 and curr/prev < IMPROVE then break
29 prev = curr
30 return top-K programs in progs

Synthesis Algorithm 1 shows the algorithm of DefEnSyn. Its inputs are a net-
work, given by an encoder E and a classifier C, a training set of images and
their classes DT r, and an adversarial attack A. It returns a set of repair pro-
grams P with different sets of repaired features. DefEnSyn begins by computing
the feature vectors of the inputs, computing the feature vectors of the adversar-
ial examples, and storing the true classes (Line 1–Line 3). It then initializes the
dictionary progs mapping a set of repaired features to their best program and
score (Line 4). Then, it initializes the vectors SL and SR, which store the average
scores of each feature on the left-hand and right-hand sides (Line 5). Next, it ini-



12 T. Yuviler, D. Drachsler-Cohen

tializes vectors that enable the computation of these average scores: two vectors
for storing the sum of scores SL and SR and two vectors for storing the number
of feature occurrences ZL and ZR (Line 6–Line 7). Afterwards, it initializes the
probability distributions to uniform distributions by invoking the softmax oper-
ation over the score vectors (Line 8). Next, it initializes the variable prev that
stores the sum of the scores of the top-K programs, which will be used in an
early stopping condition (Line 9). Then, DefEnSyn begins synthesizing programs
of increasing length from one to MAX_NUM_ASSIGNMENTS (Line 10). For every pro-
gram length, DefEnSyn synthesizes MAX_ITER_PER_LENGTH programs (Line 11).
A program P is synthesized by sampling its instructions using Algorithm 2, given
the probability distributions (Line 12–Line 14). Then, it computes the program’s
score AccR(N ′, DT r)+λ·AccC(N ′, DT r), where N ′ = C◦P ◦E (Line 15–Line 18).
Note that to compute the score of a given input, DefEnSyn passes its stored fea-
ture vector through the program P and then through the classifier C. That is,
every input passes through the encoder E only twice (Line 1–Line 2), rather than
for every candidate repair program. This significantly reduces the synthesis time,
since the encoder consists of most of the layers and thus involves many compu-
tations. Then, to update the score vectors and progs, DefEnSyn extracts from P
the features on the left-hand side and on the right-hand side (Line 19). Accord-
ingly, it updates the average vectors (Line 20–Line 23) and updates progs if P ’s
set of repaired features is new or if its score is better (Line 24–Line 25). After
synthesizing all programs for a given length, DefEnSyn updates the probability
distributions using the softmax operation (Line 26). Then, it checks whether it
can stop early by checking the improvement of this iteration (Line 27–Line 29).
This is checked by computing the ratio of the sum of the scores of the current
top-K programs and this sum in the previous iteration. If the ratio is below a
threshold IMPROVE, DefEnSyn terminates. Otherwise, it updates prev and con-
tinues to another iteration. At the end, DefEnSyn returns the top-K programs
in progs, to obtain a diverse set of repair programs. We note that, in practice,
synthesizing effective repair programs can be achieved with a small training set
DT r (several hundred suffice). In case the network’s original training set is un-
available, it is possible to synthesize a training set, as suggested by [56,42,86].

Sampling Instructions Algorithm 2 generates a random instruction. Its inputs
are the probability distributions for selecting the features for the left-hand side
and the right-hand side. It first samples the candidates for operands: the fea-
ture to repair, the two repairing features, and a real-valued constant (within a
predetermined interval [l, u]). It then determines the first and second operands
(d1 and d2) by uniformly sampling from the two repairing features and the
constant. Next, it uniformly samples an operator. Lastly, it uniformly samples
the right-hand side over the constant, the first repairing feature, and the arith-
metic computation. This form of sampling expresses our preference for simple
assignments over arithmetic operations, since they provide simpler repairs.



Enhancing Neural Network Robustness via Synthesis of Repair Programs 13

Algorithm 2: generate_random_assignment(DistLHS , DistRHS)
input : DistLHS , DistRHS ∈ [0, 1]m, probability distributions over the

features for the left-hand side and the right-hand side.
output: An assignment instruction.

1 lhs_v ∼ DistLHS({v1, . . . , vm})
2 rhs_v1 ∼ DistRHS({v1, . . . , vm})
3 rhs_v2 ∼ DistRHS({v1, . . . , vm})
4 const ∼ Uniform([l, u])
5 d1 ∼ Uniform({const, rhs_v1, rhs_v2})
6 d2 ∼ Uniform({const, rhs_v1, rhs_v2})
7 op ∼ Uniform({+, -, /, •, max, min})
8 rhs ∼ Uniform({const, rhs_v1, op(d1,d2)})
9 return lhs_v = rhs

A Running Example Figure 5 shows a running example of DefEnSyn. Its in-
puts are a network split into an encoder E and a classifier C, a training set of
three images, and an attack A. DefEnSyn begins by iterating over the training
set and computing for each image its perturbed image using A. It then passes
the image and the perturbed image through E and stores the feature vectors
in features and adv_features (Figure 5(a)). In this example, there are three
features (v ∈ R3). Then, DefEnSyn enumerates programs by incrementally in-
creasing the programs’ lengths, from one to MAX_NUM_ASSIGNMENTS = 10. For
each length, it generates MAX_ITER_PER_LENGTH = 106 programs. For program
length 1, the left-hand side DistLHS and the right-hand side DistRHS distri-
butions are uniform: (1/3, 1/3, 1/3). After generating 106 programs of length 1,
DistLHS and DistRHS are updated based on their scores (Figure 5(b), top left).
It then continues to program length 2 and generates 106 programs. Figure 5(b)
shows the last iteration of prog_length = 2 (i.e., i = 106). In this iteration, the
sampled program is P: v1 = v3 + 3.5; v2 = −1.7 . It is constructed by calling
Algorithm 2 twice with DistLHS and DistRHS . DefEnSyn computes P ’s score by
passing each feature vector and each adversarial feature vector through P and
then C. For each, it checks whether the predicted class is correct. If so, the score
increases by λ = 1 for a feature vector and by 1 for an adversarial feature vector.
In this example, the score is 4. Then, for each LHS feature, v1 and v2, it adds 1
to its entry in ZL and adds the score to its entry in SL. Similarly, it updates the
entry of the RHS feature v3 in ZR and SR. Then, DefEnSyn checks the dictionary
progs at the entry of the repaired feature set {v1, v2}. In this example, 4 is a
better score and thus progs is updated (Figure 5(b), right). After this iteration,
which completes the sampling for length 2, it updates DistLHS and DistRHS

given SL, SR, ZR, and ZL. For instance, the probability of selecting v1 for the
left-hand side rises from 0.1 to 0.2, whereas that of v2 drops from 0.7 to 0.6
(Figure 5(c), left). DefEnSyn next checks whether the program length 2 yields a
sufficient improvement in the cumulative score of the top-K programs. In this
example, it does, and so it proceeds to length 3. Figure 5(c) shows its first itera-



14 T. Yuviler, D. Drachsler-Cohen

Fig. 5. Illustration of DefEnSyn.



Enhancing Neural Network Robustness via Synthesis of Repair Programs 15

tion, where P: v3 = v1 − 0.3; v1 = v2/3.5; v2 = min(v2, 2) and its score is 3.
It updates SL, SR, ZR, ZL and then updates progs, since P is the first program
with left-hand side {v1, v2, v3} (Figure 5(c), right). When DefEnSyn completes,
it returns the top-K (in the example, K = 3) programs with the highest scores
in progs, each repairing a different set of features (Figure 5(d)).

Limitations DefEnSyn has two main limitations. First, it is an empirical defense
and does not guarantee soundness or completeness, i.e., the synthesized programs
may not always ensure robustness, and DefEnSyn may miss programs that could
ensure robustness. Second, to keep the synthesis overhead tractable, it does not
analyze dependencies among features or relations between the repair programs.

5 Evaluation

In this section, we evaluate DefEnSyn and show: (1) it improves the robustness of
networks against state-of-the-art black-box L∞, L2, and L0 adversarial attacks,
outperforming state-of-the-art adversarial training and randomization defenses,
(2) it only slightly reduces the clean accuracy of the defended networks, with
a maximum decrease of −2%, (3) it can synthesize effective repair programs
within a few hours, unlike existing adversarial training posing a training over-
head of 1-2 days, (4) the inference overhead stemming from incorporating its
repair programs into a network is negligible, (5) it effectively counters backdoor
attacks, outperforming an existing repair [77], and (6) its synthesis components
are important for achieving both high clean accuracy and high robust accuracy.

Implementation and Setup We implemented DefEnSyn1 in Python using Py-
Torch. Our implementation supports GPU parallelization. Experiments ran on
an Ubuntu 20.04.2 OS on a dual AMD EPYC 7742 server with 1TB RAM
and eight NVIDIA A100 GPUs. Unless otherwise stated, the hyper-parameters
are |DT r| = 750, MAX_NUM_ASSIGNMENTS = 10, MAX_ITER_PER_LENGTH = 106,
IMPROVE = 1.01, λ = 1, K = 30, and [l, u] = [−30, 30] (Algorithm 2). We
evaluate DefEnSyn on two image data sets, CIFAR-10 [34] and ImageNet [19],
consisting of d × d × 3 colored images, where d = 32 for CIFAR-10 and d = 224
for ImageNet. An image is classified as one of 10 classes for CIFAR-10 and as one
of 1,000 classes for ImageNet. We consider different networks, where for each,
we consider as the encoder all layers but the last one and as the classifier the
last layer. The feature vector dimension m is between 256 and 512. We mea-
sure the clean and robust accuracies over inputs in the test sets of CIFAR-10 or
ImageNet, which are disjoint from the training sets DefEnSyn uses.

5.1 Defense against L∞, L2, and L0 Adversarial Example Attacks

We next evaluate DefEnSyn’s effectiveness for black-box adversarial example at-
tacks. We compare DefEnSyn with several state-of-the-art defenses to assess its
1 https://github.com/TomYuviler/DefEnSyn



16 T. Yuviler, D. Drachsler-Cohen

effectiveness. The selected baselines represent diverse approaches in adversarial
defense. The first baseline is the adversarial training proposed by [66], denoted
as AdvTrain, which is the current state-of-the-art defense against L∞ adver-
sarial attacks. The second baseline is the diffusion-based randomization defense
introduced by [10], denoted as DiffRandom. This approach utilizes a pre-trained
denoising diffusion model to modify the inference phase without additional train-
ing or synthesis and stands as the state-of-the-art randomization-based defense
against L2 adversarial attacks. The third baseline is the randomized smooth-
ing technique developed by [15], which incorporates Gaussian noise during both
training and inference phases to defend against L2 adversarial attacks, denoted
as GausRandom. The fourth baseline is the randomization-based defense cus-
tomized for L0 attacks, proposed by [39], which performs a randomized ablation
of image pixels. This defense is the state-of-the-art defense against L0 attacks
and is denoted as AblaRandom. For all baselines, we use the authors’ code with
their default hyper-parameters. In this experiment, we focus on large networks
for which no scalable repair defense currently exists against adversarial attacks.

Evaluated Networks We consider four network classifiers for ImageNet. The first
network, denoted as ConvNeXt, is Isotropic ConvNeXt-S [48], one of the state-of-
the-art models for ImageNet classification using convolutional neural networks,
with 22 million parameters. The second network, denoted as DeiT, is Data-
Efficient Image Transformer [76], which is a Vision Transformer model [20] with
an efficient training process and 22 million parameters. The third network, de-
noted as ViT, is a Vision Transformer model [20], with 6 million parameters.
The fourth network, denoted as ResNet18, is ResNet-18 [28], which is a convo-
lutional neural network with 12 million parameters. The weights for ConvNeXt
were obtained from the original ConvNeXt repository2. The weights of the other
networks were obtained from timm [78], an open-source collection of classifiers.

Adversarial Example Attacks We evaluate DefEnSyn against the Square at-
tack [4], which is the state-of-the-art black-box adversarial example attack (based
on a recent benchmark [87]), for the L∞ and L2 norms. The perturbation limits
are ϵ = 4/255 for the L∞ norm and ϵ = 0.5 for the L2 norm. For the L0 norm, we
evaluate DefEnSyn against two state-of-the-art black-box attacks: the Pixle at-
tack [57] and the Sparse-RS attack [16]. For the Square and the Pixle attacks,
we use the implementation in Torchattacks [33], and for the Sparse-RS attack,
we use the authors’ code. For all attacks, we use the default hyper-parameters.

Results We run the attacks on the defended networks over 10,000 randomly
selected images from ImageNet’s test set. Table 2 reports the clean accuracy,
robust accuracy, training/synthesis overhead, and inference time. The results
show that DefEnSyn’s repair programs significantly increase the models’ robust
accuracy against the L∞ Square attack by +70.6%, with a minor decrease in
clean accuracy of less than −1%. In contrast, AdvTrain, the state-of-the-art
2 https://github.com/facebookresearch/ConvNeXt

https://github.com/facebookresearch/ConvNeXt


Enhancing Neural Network Robustness via Synthesis of Repair Programs 17

Table 2. DefEnSyn vs. state-of-the-art adversarial training and randomization defenses.

Classifier
(# Params.) Attack Defense Clean

acc. (%)
Robust
acc. (%)

Training/synthesis
overhead (H)

Inference
time (S)

ConvNeXt
(22M)

Square
(L∞)

No defense 79.72 7.69 - 2.9 × 10−5

AdvTrain 66.11 51.97 49.4 2.9 × 10−5

DefEnSyn 79.52 77.38 1.0 2.9 × 10−5

DeiT
(22M)

Square
(L∞)

No defense 79.21 4.99 - 3.1 × 10−5

AdvTrain 67.23 54.36 45.2 3.1 × 10−5

DefEnSyn 78.77 76.44 0.9 3.2 × 10−5

ResNet18
(12M)

Square
(L2)

No defense 71.36 55.97 - 2.9 × 10−5

GausRandom 50.08 49.61 31.8 0.17
DefEnSyn 71.15 70.96 2.2 2.9 × 10−5

ViT
(6M)

Square
(L2)

No defense 69.33 54.21 - 2.9 × 10−5

DiffRandom 62.86 62.86 0 59.75
DefEnSyn 69.28 69.21 1.5 3.1 × 10−5

ResNet18
(12M)

Pixle
(L0)

No defense 71.04 10.71 - 2.9 × 10−5

AblaRandom 35.13 32.53 26.3 6.89
DefEnSyn 69.98 40.75 1.5 3.2 × 10−5

ResNet18
(12M)

Sparse-RS
(L0)

No defense 71.79 6.56 - 2.9 × 10−5

AblaRandom 35.73 34.47 26.3 6.89
DefEnSyn 70.46 65.0 2.1 3.1 × 10−5

adversarial training, increases the models’ robust accuracy by +46.9% against
the L∞ Square attack, with a decrease in clean accuracy of −12.4%. For the
L2 Square attack, DefEnSyn increases the robust accuracy by +15.0%, with
a minor decrease in clean accuracy of −1%. In contrast, the state-of-the-art
randomization-based defenses, GausRandom and DiffRandom, on average increase
the robust accuracy by +1.2%, with a significant decrease in clean accuracy of
−14%. For the L0 attacks, DefEnSyn increases the robust accuracy by +44.2%,
with a minor decrease in the clean accuracy of −1%. In contrast, AblaRandom, the
state-of-the-art defense for L0 attacks, enhances the robust accuracy by +24.9%
and significantly decreases the clean accuracy by −36%. Additionally, on average,
DefEnSyn’s synthesis overhead is 1.5 hours, while the average training overhead
of AdvTrain is 47.3 hours, of GausRandom is 31.8 hours, and of AblaRandom is
26.3 hours. The DiffRandom defense does not require any training, but it assumes
access to a pre-trained denoiser, unlike DefEnSyn and the other baselines. The
average inference time per image of DefEnSyn and AdvTrain is similar to that of
the original (undefended) network: approximately 3 × 10−5 seconds. In contrast,
the inference time of the randomization-based techniques is significantly higher
and can reach up to one minute in the worst case.

5.2 Defense against Backdoor Attacks

Next, we compare DefEnSyn to a repair defense against a backdoor at-
tack [61,46,27]. Backdoor attacks embed malicious behaviors into a classifier



18 T. Yuviler, D. Drachsler-Cohen

Table 3. DefEnSyn vs. NNRepair on a CIFAR-10 classifier against a backdoor attack.

Classifier (# Params.) Attack Defense Clean acc. (%) Robust acc. (%)

ConvCIFAR
(0.9M) Backdoor

No defense 72.26 15.89
NNRepair-I 72.28 16.70
NNRepair-L 71.65 19.66
DefEnSyn-30 70.29 34.18
DefEnSyn-1 70.69 43.06

during its training phase by introducing a small proportion of poisoned data
into the training set, each containing a specific pattern (“trigger”), such as a
small white square. The model, once trained with this poisoned data set, behaves
normally on standard inputs but produces a specific incorrect output when the
trigger is present in the input. We note that, unlike the majority of adversar-
ial example attacks, the perturbation is constant and is not influenced by the
original input image.

Setting We compare to NNRepair [77], which utilizes a constraint solver to make
minor adjustments to the weights of specific network layers to mitigate the back-
door attack’s effects. We consider two variants of NNRepair: NNRepair-I, which
modifies an intermediate layer, and NNRepair-L, which modifies the last layer.
We evaluate DefEnSyn and NNRepair on the convolutional classifier for CIFAR-
10, ConvCIFAR, evaluated by NNRepair3. This network has 890,000 parameters
and achieves a test accuracy of 72.26% on clean inputs. However, its accuracy
drops significantly to 15.89% for inputs with the trigger of a 3 × 3 white square
positioned at the bottom-right corner of the image. The defense’s objective is to
enhance the classification accuracy for inputs with the trigger without decreasing
the clean accuracy. Since the attack is independent of the input image, introduc-
ing randomness into the network as a defense mechanism is unnecessary. Thus,
in this experiment, we consider a variant of DefEnSyn that defends using the
repair program with the highest score seen during the synthesis process, instead
of defending using a set P of K=30 repair programs. We denote DefEnSyn’s
defense by DefEnSyn-30 and its variant by DefEnSyn-1.

Results We run a backdoor attack on all 10,000 images from CIFAR-10’s test
set. The attack adds the trigger: a 3×3 white square placed at the bottom-right
corner. Table 3 shows the results. While both approaches reduce the network’s
clean accuracy by at most −2%, DefEnSyn significantly enhances the robust
accuracy: by +18.29% when K=30 and by +27.17% when K=1. In contrast,
NNRepair enhances the robust accuracy of the network by at most +3.77%.

3 https://github.com/nnrepair

https://github.com/nnrepair


Enhancing Neural Network Robustness via Synthesis of Repair Programs 19

Fig. 6. The impact of different values of K (top-K) on the robust and clean accuracies.

5.3 Ablation Study

Lastly, we provide an ablation study showing the importance of: (1) defending by
a set of repair programs, (2) synthesizing programs and sampling variables from
learned distributions (showing that merely hiding the chosen repair program
from the attacker is not enough), and (3) allowing multiple instructions in the
repair programs (justifying our large program space). In addition, we analyze
the impact that key hyper-parameters have on the performance of DefEnSyn.

Set of Programs We evaluate the importance of defending using a set of repair
programs by running DefEnSyn with different values of K (i.e., the size of the
repair program set P). We focus on two ImageNet classifiers, ResNet18 and DeiT,
and the Square attack, which runs over 10,000 random images from ImageNet’s
test set. We defend the first model against the L2 Square attack and the second
model against the L∞ Square attack. Figure 6 shows the results. It shows that
with K = 1 (a single repair program), the robust accuracy does not increase.
This is expected since the attacker can query the network multiple times (in a
black-box fashion) to adapt its attack to the defense. As K increases, the robust
accuracy increases and it stabilizes around K ≥ 20. Results also show that the
value of K has a low impact on the clean accuracy.

Synthesis and Learned Distributions Next, we compare DefEnSyn to two vari-
ants: Random and Uniform-DefEnSyn. Random generates a random program upon
each input during inference (i.e., it randomly selects a program length (1–10)
and generates instructions using Algorithm 2 with uniform probability distribu-
tions). Uniform-DefEnSyn runs the synthesis (Algorithm 1) but does not update
the variable distributions, i.e., DistLHS and DistRHS remain uniform distribu-
tions. We compare the three algorithms on ResNet18 for the L∞ Square attack,
with a perturbation limit of ϵ = 4/255, and 10,000 random images from Im-
ageNet’s test set. Table 4 presents the results. The results show that Random
improves the robust accuracy by +21%, but decreases the clean accuracy signifi-
cantly by −44.8%. Uniform-DefEnSyn increases the robust accuracy by +54.6%,
but decreases the clean accuracy by −2%. DefEnSyn increases the robust accu-



20 T. Yuviler, D. Drachsler-Cohen

Table 4. Effectiveness of DefEnSyn’s synthesis and learned distributions.

Defense Clean accuracy (%) Robust accuracy (%)

No defense 71.88 5.21
Random 27.09 26.21
Uniform-DefEnSyn 69.90 59.79
DefEnSyn 70.83 65.00

Fig. 7. Clean accuracy (left) and robust accuracy (right) for different program lengths.

racy by +59.8% and decreases the clean accuracy by only −1%. This shows the
importance of our synthesis and learned distributions.

Multiple Instructions Next, we show the importance of DefEnSyn’s ability to
synthesize repair programs with multiple instructions. We focus on the CIFAR-10
classifier and the backdoor attack (Section 5.2), evaluated over all 10,000 images
from CIFAR-10’s test set. We run DefEnSyn and report the clean and robust
accuracies of the top-K (for K = 30) repair programs after each iteration of
prog_length. Figure 7 shows the results. The results indicate that the synthesis
of multiple instructions allows DefEnSyn to increase the robust accuracy.

Training Set Size We next evaluate the impact of the size of the training set DT r

by running DefEnSyn with training sets of different sizes. We focus on the widely
known Wide-ResNet-28-4 CIFAR-10 classifier [85], with 6 million parameters,
and the L∞ Square attack, with a perturbation limit of ϵ = 8/255. We evaluate
DefEnSyn’s defense over all 10,000 images from the CIFAR-10 test set. Figure 8
shows the clean and robust accuracies as a function of the training set size.
It shows that even a very small training set of 10 images enhances the robust
accuracy by almost +20%, with a decrease of −3% in the clean accuracy. With 50
images, the robust accuracy increases by an additional +2%, and the decrease in
clean accuracy drops to −1%. The robust and clean accuracies slightly improve
with larger training sets and stabilize when the training set size is 250.

Constant Interval We next analyze the impact of the size of the interval
[l, u], which defines the range of the constants in the synthesized repair pro-



Enhancing Neural Network Robustness via Synthesis of Repair Programs 21

Fig. 8. The impact of the training set size |DT r| on the robust and clean accuracies.

Table 5. The impact of the constant interval [l, u] on the robust and clean accuracies.

[l, u] Clean accuracy (%) Robust accuracy (%)

[−5, 5] 85.22 83.55
[−15, 15] 85.39 83.57
[−30, 30] 85.53 83.55
No defense 85.59 60.30

grams (Algorithm 2). We run DefEnSyn with different intervals [l, u] where
[l, u] ∈ {[−5, 5], [−15, 15], [−30, 30]}. We focus on the Wide-ResNet-28-4 CIFAR-
10 classifier and the L∞ Square attack with a perturbation limit of ϵ = 8/255.
We evaluate DefEnSyn’s defense over all 10,000 images from the CIFAR-10 test
set. Table 5 shows the clean and robust accuracies. The results show that the
clean and robust accuracies are very similar, suggesting that further increasing
the interval is unnecessary.

Balancing Factor Lastly, we analyze the impact of the balancing factor λ, which
weights the importance of the clean accuracy relative to the robust accuracy in
the program’s score function. We run DefEnSyn with different values of λ on
the Wide-ResNet-28-4 CIFAR-10 classifier and the L∞ Square attack with a
perturbation limit of ϵ = 8/255. We evaluate DefEnSyn’s defense over all 10,000
images from the CIFAR-10 test set. Table 6 shows the clean and robust accura-
cies. The results show the expected trade-off: higher values of λ lead to better
clean accuracy at the expense of robust accuracy, while lower values improve
robustness but cause a decrease in clean accuracy.

6 Related Work

In this section, we discuss the closest related work.

Neural Network Repair Several repair techniques have been proposed for neural
networks. NNRepair enhances robustness by modifying the weights in a single



22 T. Yuviler, D. Drachsler-Cohen

Table 6. The impact of the balancing factor λ on the robust and clean accuracies.

λ Clean accuracy (%) Robust accuracy (%)

0 84.09 83.59
0.5 85.39 83.57
1 85.53 83.55
5 85.58 81.99
100 85.59 77.19
No defense 85.59 60.30

layer using constraint solvers [77]. MODE performs model state differential anal-
ysis to pinpoint network parameters responsible for undesired behaviors, followed
by network retraining with selected inputs [49]. REGLO applies a verification-
guided algorithm to detect and rectify violations of the global robustness prop-
erty by adjusting the weights in the network’s last layer [24]. CARE repairs mul-
tiple layers via causality-based fault localization, targeting weight adjustments
in neurons linked to undesired behavior [72]. Several works identify the mini-
mal weight modifications necessary to modify the network’s behavior [59,25,69].
Arachne repairs weights via Differential Evolution [67]. APRNN provides a prov-
able repair [74], looking for a repair that is correct for all inputs within a convex
bounded polytope. Several works repair via architectural modifications, such as
integrating a compact patch network [23], adding a self-correcting layer [38], and
decoupling the network into separate activation and value networks [70].

Randomization Defenses Like DefEnSyn, several defenses incorporate random-
ness into the classification process. One defense modifies the classification by
randomly selecting multiple samples and then predicting the class based on a
majority vote among these samples [9]. Others rely on randomized smoothing,
wherein Gaussian noise layers are added to the model, which is then trained with
these layers [37,15,45]. During inference, multiple copies of the original input are
generated, and the prediction relies on the average of the predictions. Another
approach modifies only the inference procedure [62,10]. Given a (pre-trained)
classifier, they create Gaussian noise-corrupted copies of the input image, denoise
them, and then base the classification on the majority vote across all denoised
images. Others use a diffusion model to introduce random noise into an adver-
sarial example and then employ a reverse denoising process to purify the image
before classification [53]. A different approach defends against L0 adversarial
example attacks using randomized ablation of pixels [39].

Program Synthesis Like DefEnSyn, several works guide a synthesizer by learn-
ing. Probe introduces just-in-time learning, which guides the search by leverag-
ing partial solutions (programs) and probabilistic models [7]. Counterexample
Guided Inductive Synthesis (CEGIS) prunes the search space using counterex-
amples [68]. Divide-and-conquer independently enumerates smaller expressions
that are suitable for specific subsets of inputs [3]. Large language models (LLMs)



Enhancing Neural Network Robustness via Synthesis of Repair Programs 23

have been shown to be effective in directing the synthesizer through an iterative
feedback loop between the LLM and the synthesizer [43]. Some works employ
Bayesian methods to adjust the sampling distributions for programs [60,21],
while others rely on Markov Chain Monte Carlo to synthesize programs [63].

7 Conclusion

We present DefEnSyn, a synthesizer of repair programs for enhancing the ro-
bustness of neural network classifiers. A repair program repairs a few neurons
using other neurons. DefEnSyn performs a stochastic search to identify effec-
tive neurons for the repair. To scale, it samples programs of increasing lengths.
DefEnSyn synthesizes a set of diverse repair programs so that, at inference, a
program can be randomly selected for the repair. We evaluate DefEnSyn on
large networks for ImageNet and CIFAR-10 against black-box adversarial exam-
ple attacks. The evaluation shows that DefEnSyn’s repair programs enhance the
networks’ robust accuracy on average by +71% against L∞ attacks, by +15%
against L2 attacks, by +44% against L0 attacks, and by +27% against backdoor
attacks. DefEnSyn decreases the clean accuracy by approximately −1%. These
accuracies exceed those of state-of-the-art customized defenses relying on adver-
sarial training, randomization, or repair. DefEnSyn’s synthesis overhead is a few
hours, and its inference overhead is negligible.

References

1. Addepalli, S., Jain, S., Sriramanan, G., Babu, R.V.: Scaling adversarial train-
ing to large perturbation bounds. In ECCV (2022), https://doi.org/10.1007/
978-3-031-20065-6_18

2. Agarap, A.F.: Deep learning using rectified linear units (relu). CoRR
abs/1803.08375 (2018), http://arxiv.org/abs/1803.08375

3. Alur, R., Radhakrishna, A., Udupa, A.: Scaling enumerative program syn-
thesis via divide and conquer. In TACAS (2017), https://doi.org/10.1007/
978-3-662-54577-5_18

4. Andriushchenko, M., Croce, F., Flammarion, N., Hein, M.: Square attack: A query-
efficient black-box adversarial attack via random search. In ECCV (2020), https:
//doi.org/10.1007/978-3-030-58592-1_29

5. Ayinde, B.O., Inanc, T., Zurada, J.M.: On correlation of features extracted by
deep neural networks. In IJCNN (2019), https://doi.org/10.1109/IJCNN.2019.
8852296

6. Ayinde, B.O., Inanc, T., Zurada, J.M.: Redundant feature pruning for accelerated
inference in deep neural networks. In Neural Networks 118 (2019), https://doi.
org/10.1016/j.neunet.2019.04.021

7. Barke, S., Peleg, H., Polikarpova, N.: Just-in-time learning for bottom-up enumer-
ative synthesis. In OOPSLA (2020), https://doi.org/10.1145/3428295

8. Bornholt, J., Torlak, E., Grossman, D., Ceze, L.: Optimizing synthesis with metas-
ketches. In POPL (2016), https://doi.org/10.1145/2837614.2837666

https://doi.org/10.1007/978-3-031-20065-6_18
https://doi.org/10.1007/978-3-031-20065-6_18
http://arxiv.org/abs/1803.08375
https://doi.org/10.1007/978-3-662-54577-5_18
https://doi.org/10.1007/978-3-662-54577-5_18
https://doi.org/10.1007/978-3-030-58592-1_29
https://doi.org/10.1007/978-3-030-58592-1_29
https://doi.org/10.1109/IJCNN.2019.8852296
https://doi.org/10.1109/IJCNN.2019.8852296
https://doi.org/10.1016/j.neunet.2019.04.021
https://doi.org/10.1016/j.neunet.2019.04.021
https://doi.org/10.1145/3428295
https://doi.org/10.1145/2837614.2837666


24 T. Yuviler, D. Drachsler-Cohen

9. Cao, X., Gong, N.Z.: Mitigating evasion attacks to deep neural networks
via region-based classification. In ACSAC (2017), https://doi.org/10.1145/
3134600.3134606

10. Carlini, N., Tramèr, F., Dvijotham, K.D., Rice, L., Sun, M., Kolter, J.Z.: (certi-
fied!!) adversarial robustness for free! In ICLR (2023), https://openreview.net/
pdf?id=JLg5aHHv7j

11. Carlini, N., Wagner, D.A.: Towards evaluating the robustness of neural networks.
In IEEE Symposium on Security and Privacy, SP (2017), https://doi.org/10.
1109/SP.2017.49

12. Chen, P., Sharma, Y., Zhang, H., Yi, J., Hsieh, C.: EAD: elastic-net attacks to
deep neural networks via adversarial examples. In AAAI (2018), https://www.
aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16893

13. Chen, Q., Lamoreaux, A., Wang, X., Durrett, G., Bastani, O., Dillig, I.: Web
question answering with neurosymbolic program synthesis. In PLDI (2021), https:
//doi.org/10.1145/3453483.3454047

14. Chen, S., Carlini, N., Wagner, D.A.: Stateful detection of black-box adversarial
attacks. CoRR abs/1907.05587 (2019), http://arxiv.org/abs/1907.05587

15. Cohen, J., Rosenfeld, E., Kolter, J.Z.: Certified adversarial robustness via random-
ized smoothing. In ICML (2019), http://proceedings.mlr.press/v97/cohen19c.
html

16. Croce, F., Andriushchenko, M., Singh, N.D., Flammarion, N., Hein, M.: Sparse-rs:
A versatile framework for query-efficient sparse black-box adversarial attacks. In
AAAI (2022), https://doi.org/10.1609/aaai.v36i6.20595

17. Croce, F., Hein, M.: Mind the box: l1-apgd for sparse adversarial attacks on im-
age classifiers. In ICML (2021), http://proceedings.mlr.press/v139/croce21a.
html

18. Croce, F., Hein, M.: Adversarial robustness against multiple and single lp-threat
models via quick fine-tuning of robust classifiers. In ICML (2022), https://
proceedings.mlr.press/v162/croce22b.html

19. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale
hierarchical image database. In CVPR (2009), https://doi.org/10.1109/CVPR.
2009.5206848

20. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.:
An image is worth 16x16 words: Transformers for image recognition at scale. In
ICLR (2021), https://openreview.net/forum?id=YicbFdNTTy

21. Ellis, K., Solar-Lezama, A., Tenenbaum, J.: Sampling for bayesian program
learning. In NIPS (2016), https://proceedings.neurips.cc/paper/2016/hash/
afd4836712c5e77550897e25711e1d96-Abstract.html

22. Fiscutean, A.: How the eu ai act regulates artificial intelligence: What it means for
cybersecurity (2023), https://www.csoonline.com/article/1258597

23. Fu, F., Li, W.: Sound and complete neural network repair with minimality
and locality guarantees. In ICLR (2022), https://openreview.net/forum?id=
xS8AMYiEav3

24. Fu, F., Wang, Z., Fan, J., Wang, Y., Huang, C., Chen, X., Zhu, Q., Li, W.: RE-
GLO: Provable neural network repair for global robustness properties. In NeurIPS
Workshop (2022), https://openreview.net/forum?id=FRTXdodwsoA

25. Goldberger, B., Katz, G., Adi, Y., Keshet, J.: Minimal modifications of deep neural
networks using verification. In LPAR (2020), https://doi.org/10.29007/699q

26. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. In ICLR (2015), http://arxiv.org/abs/1412.6572

https://doi.org/10.1145/3134600.3134606
https://doi.org/10.1145/3134600.3134606
https://openreview.net/pdf?id=JLg5aHHv7j
https://openreview.net/pdf?id=JLg5aHHv7j
https://doi.org/10.1109/SP.2017.49
https://doi.org/10.1109/SP.2017.49
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16893
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16893
https://doi.org/10.1145/3453483.3454047
https://doi.org/10.1145/3453483.3454047
http://arxiv.org/abs/1907.05587
http://proceedings.mlr.press/v97/cohen19c.html
http://proceedings.mlr.press/v97/cohen19c.html
https://doi.org/10.1609/aaai.v36i6.20595
http://proceedings.mlr.press/v139/croce21a.html
http://proceedings.mlr.press/v139/croce21a.html
https://proceedings.mlr.press/v162/croce22b.html
https://proceedings.mlr.press/v162/croce22b.html
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://openreview.net/forum?id=YicbFdNTTy
https://proceedings.neurips.cc/paper/2016/hash/afd4836712c5e77550897e25711e1d96-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/afd4836712c5e77550897e25711e1d96-Abstract.html
https://www.csoonline.com/article/1258597
https://openreview.net/forum?id=xS8AMYiEav3
https://openreview.net/forum?id=xS8AMYiEav3
https://openreview.net/forum?id=FRTXdodwsoA
https://doi.org/10.29007/699q
http://arxiv.org/abs/1412.6572


Enhancing Neural Network Robustness via Synthesis of Repair Programs 25

27. Gu, T., Dolan-Gavitt, B., Garg, S.: Badnets: Identifying vulnerabilities in the
machine learning model supply chain. CoRR abs/1708.06733 (2017), http:
//arxiv.org/abs/1708.06733

28. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In CVPR (2016), https://doi.org/10.1109/CVPR.2016.90

29. He, Z., Rakin, A.S., Fan, D.: Parametric noise injection: Trainable random-
ness to improve deep neural network robustness against adversarial attack.
In CVPR (2019), http://openaccess.thecvf.com/content_CVPR_2019/html/
He_Parametric_Noise_Injection_Trainable_Randomness_to_Improve_Deep_
Neural_Network_CVPR_2019_paper.html

30. Hung-Quang, N., Lao, Y., Pham, T., Wong, K., Doan, K.D.: Understanding the
robustness of randomized feature defense against query-based adversarial attacks.
In ICLR (2024), https://openreview.net/forum?id=vZ6r9GMT1n

31. Jiang, E., Singh, G.: RAMP: boosting adversarial robustness against
multiple lp perturbations for universal robustness. In NeurIPS
(2024), http://papers.nips.cc/paper_files/paper/2024/hash/
4d5ce4a7ebf588834db127965cdb5ccb-Abstract-Conference.html

32. Jiang, E., Singh, G.: Towards universal certified robustness with multi-norm train-
ing. CoRR abs/2410.03000 (2024), https://doi.org/10.48550/arXiv.2410.
03000

33. Kim, H.: Torchattacks: A pytorch repository for adversarial attacks.
arXiv preprint arXiv:2010.01950 (2020), https://github.com/Harry24k/
adversarial-attacks-pytorch

34. Krizhevsky, A.: Learning multiple layers of features from tiny images (2009),
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

35. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In NeurIPS (2012), https://proceedings.neurips.
cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html

36. Kurakin, A., Goodfellow, I.J., Bengio, S.: Adversarial examples in the physical
world. In ICLR (2017), https://openreview.net/forum?id=HJGU3Rodl

37. Lécuyer, M., Atlidakis, V., Geambasu, R., Hsu, D., Jana, S.: Certified robustness
to adversarial examples with differential privacy. In IEEE Symposium on Security
and Privacy (SP) (2019), https://doi.org/10.1109/SP.2019.00044

38. Leino, K., Fromherz, A., Mangal, R., Fredrikson, M., Parno, B., Pasareanu, C.S.:
Self-correcting neural networks for safe classification. In CAV Workshops (2022),
https://doi.org/10.1007/978-3-031-21222-2_7

39. Levine, A., Feizi, S.: Robustness certificates for sparse adversarial attacks by
randomized ablation. In AAAI (2020), https://ojs.aaai.org/index.php/AAAI/
article/view/5888

40. Li, H., Shan, S., Wenger, E., Zhang, J., Zheng, H., Zhao, B.Y.: Blacklight:
Scalable defense for neural networks against query-based black-box attacks.
In USENIX (2022), https://www.usenix.org/conference/usenixsecurity22/
presentation/li-huiying

41. Li, J., Guo, Y., Lao, S., Wu, Y., Bai, L., Wei, Y.: Towards a high robust neural
network via feature matching. In Int. J. Multim. Inf. Retr. (2021), https://doi.
org/10.1007/s13735-021-00219-0

42. Li, Q., Guo, Y., Chen, H.: Practical no-box adversarial attacks against
dnns. In NeurIPS (2020), https://proceedings.neurips.cc/paper/2020/hash/
96e07156db854ca7b00b5df21716b0c6-Abstract.html

http://arxiv.org/abs/1708.06733
http://arxiv.org/abs/1708.06733
https://doi.org/10.1109/CVPR.2016.90
http://openaccess.thecvf.com/content_CVPR_2019/html/He_Parametric_Noise_Injection_Trainable_Randomness_to_Improve_Deep_Neural_Network_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/He_Parametric_Noise_Injection_Trainable_Randomness_to_Improve_Deep_Neural_Network_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/He_Parametric_Noise_Injection_Trainable_Randomness_to_Improve_Deep_Neural_Network_CVPR_2019_paper.html
https://openreview.net/forum?id=vZ6r9GMT1n
http://papers.nips.cc/paper_files/paper/2024/hash/4d5ce4a7ebf588834db127965cdb5ccb-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/4d5ce4a7ebf588834db127965cdb5ccb-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2410.03000
https://doi.org/10.48550/arXiv.2410.03000
https://github.com/Harry24k/adversarial-attacks-pytorch
https://github.com/Harry24k/adversarial-attacks-pytorch
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://openreview.net/forum?id=HJGU3Rodl
https://doi.org/10.1109/SP.2019.00044
https://doi.org/10.1007/978-3-031-21222-2_7
https://ojs.aaai.org/index.php/AAAI/article/view/5888
https://ojs.aaai.org/index.php/AAAI/article/view/5888
https://www.usenix.org/conference/usenixsecurity22/presentation/li-huiying
https://www.usenix.org/conference/usenixsecurity22/presentation/li-huiying
https://doi.org/10.1007/s13735-021-00219-0
https://doi.org/10.1007/s13735-021-00219-0
https://proceedings.neurips.cc/paper/2020/hash/96e07156db854ca7b00b5df21716b0c6-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/96e07156db854ca7b00b5df21716b0c6-Abstract.html


26 T. Yuviler, D. Drachsler-Cohen

43. Li, Y., Parsert, J., Polgreen, E.: Guiding enumerative program synthesis with large
language models. CoRR abs/2403.03997 (2024), http://arxiv.org/abs/2403.
03997

44. Lin, Z., Memisevic, R., Konda, K.R.: How far can we go without convolution: Im-
proving fully-connected networks. CoRR abs/1511.02580 (2015), http://arxiv.
org/abs/1511.02580

45. Liu, X., Cheng, M., Zhang, H., Hsieh, C.: Towards robust neural net-
works via random self-ensemble. In ECCV (2018), https://doi.org/10.1007/
978-3-030-01234-2_23

46. Liu, Y., Ma, S., Aafer, Y., Lee, W., Zhai, J., Wang, W., Zhang, X.: Trojaning
attack on neural networks. In NDSS (2018), https://www.ndss-symposium.org/
wp-content/uploads/2018/02/ndss2018_03A-5_Liu_paper.pdf

47. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin trans-
former: Hierarchical vision transformer using shifted windows. In ICCV (2021),
https://doi.org/10.1109/ICCV48922.2021.00986

48. Liu, Z., Mao, H., Wu, C., Feichtenhofer, C., Darrell, T., Xie, S.: A convnet for the
2020s. In CVPR (2022), https://doi.org/10.1109/CVPR52688.2022.01167

49. Ma, S., Liu, Y., Lee, W., Zhang, X., Grama, A.: MODE: automated neural network
model debugging via state differential analysis and input selection. In ESEC/SIG-
SOFT (2018), https://doi.org/10.1145/3236024.3236082

50. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning
models resistant to adversarial attacks. In ICLR (2018), https://openreview.net/
forum?id=rJzIBfZAb

51. Mell, S., Zdancewic, S., Bastani, O.: Optimal program synthesis via abstract in-
terpretation. In POPL (2024), https://doi.org/10.1145/3632858

52. Nayak, G.K., Khatri, I., Rawal, R., Chakraborty, A.: Data-free defense of black
box models against adversarial attacks. In CVPR Workshops (2024), https://
doi.org/10.1109/CVPRW63382.2024.00030

53. Nie, W., Guo, B., Huang, Y., Xiao, C., Vahdat, A., Anandkumar, A.: Diffusion
models for adversarial purification. In ICML (2022), https://proceedings.mlr.
press/v162/nie22a.html

54. NSA Media Relations: Guidance for securing ai issued by nsa,
ncsc-uk, cisa, and partners. https://www.nsa.gov/Press-Room/
Press-Releases-Statements/Press-Release-View/Article/3598020/
guidance-for-securing-ai-issued-by-nsa-ncsc-uk-cisa-and-partners/
(2023), accessed: 2024-03-18

55. Pan, R., Rajan, H.: On decomposing a deep neural network into modules. In:
Devanbu, P., Cohen, M.B., Zimmermann, T. (eds.) ESEC/FSE. pp. 889–900. ACM
(2020)

56. Papernot, N., McDaniel, P.D., Goodfellow, I.J., Jha, S., Celik, Z.B., Swami, A.:
Practical black-box attacks against machine learning. In AsiaCCS (2017), https:
//doi.org/10.1145/3052973.3053009

57. Pomponi, J., Scardapane, S., Uncini, A.: Pixle: a fast and effective black-box at-
tack based on rearranging pixels. In IJCNN (2022), https://doi.org/10.1109/
IJCNN55064.2022.9892966

58. Qi, B., Sun, H., Gao, X., Zhang, H.: Patching weak convolutional neural network
models through modularization and composition. In ASE (2022), https://doi.
org/10.1145/3551349.3561153

59. Refaeli, I., Katz, G.: Minimal multi-layer modifications of deep neural networks.
In CAV Workshops (2022), https://doi.org/10.1007/978-3-031-21222-2

http://arxiv.org/abs/2403.03997
http://arxiv.org/abs/2403.03997
http://arxiv.org/abs/1511.02580
http://arxiv.org/abs/1511.02580
https://doi.org/10.1007/978-3-030-01234-2_23
https://doi.org/10.1007/978-3-030-01234-2_23
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_03A-5_Liu_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_03A-5_Liu_paper.pdf
https://doi.org/10.1109/ICCV48922.2021.00986
https://doi.org/10.1109/CVPR52688.2022.01167
https://doi.org/10.1145/3236024.3236082
https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=rJzIBfZAb
https://doi.org/10.1145/3632858
https://doi.org/10.1109/CVPRW63382.2024.00030
https://doi.org/10.1109/CVPRW63382.2024.00030
https://proceedings.mlr.press/v162/nie22a.html
https://proceedings.mlr.press/v162/nie22a.html
https://www.nsa.gov/Press-Room/Press-Releases-Statements/Press-Release-View/Article/3598020/guidance-for-securing-ai-issued-by-nsa-ncsc-uk-cisa-and-partners/
https://www.nsa.gov/Press-Room/Press-Releases-Statements/Press-Release-View/Article/3598020/guidance-for-securing-ai-issued-by-nsa-ncsc-uk-cisa-and-partners/
https://www.nsa.gov/Press-Room/Press-Releases-Statements/Press-Release-View/Article/3598020/guidance-for-securing-ai-issued-by-nsa-ncsc-uk-cisa-and-partners/
https://doi.org/10.1145/3052973.3053009
https://doi.org/10.1145/3052973.3053009
https://doi.org/10.1109/IJCNN55064.2022.9892966
https://doi.org/10.1109/IJCNN55064.2022.9892966
https://doi.org/10.1145/3551349.3561153
https://doi.org/10.1145/3551349.3561153
https://doi.org/10.1007/978-3-031-21222-2


Enhancing Neural Network Robustness via Synthesis of Repair Programs 27

60. Saad, F.A., Cusumano-Towner, M.F., Schaechtle, U., Rinard, M.C., Mansinghka,
V.K.: Bayesian synthesis of probabilistic programs for automatic data modeling.
In POPL (2019), https://doi.org/10.1145/3290350

61. Saha, A., Subramanya, A., Pirsiavash, H.: Hidden trigger backdoor attacks. In
AAAI (2020), https://doi.org/10.1609/aaai.v34i07.6871

62. Salman, H., Sun, M., Yang, G., Kapoor, A., Kolter, J.Z.: De-
noised smoothing: A provable defense for pretrained classifiers. In
NeurIPS (2020), https://proceedings.neurips.cc/paper/2020/hash/
f9fd2624beefbc7808e4e405d73f57ab-Abstract.html

63. Schkufza, E., Sharma, R., Aiken, A.: Stochastic program optimization. In Commun.
ACM (2016), https://doi.org/10.1145/2863701

64. Shafahi, A., Najibi, M., Ghiasi, A., Xu, Z., Dickerson, J.P., Studer, C.,
Davis, L.S., Taylor, G., Goldstein, T.: Adversarial training for free! In
NeurIPS (2019), https://proceedings.neurips.cc/paper/2019/hash/
7503cfacd12053d309b6bed5c89de212-Abstract.html

65. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In ICLR (2015), http://arxiv.org/abs/1409.1556

66. Singh, N.D., Croce, F., Hein, M.: Revisiting adversarial training for im-
agenet: Architectures, training and generalization across threat models.
In NeurIPS (2023), http://papers.nips.cc/paper_files/paper/2023/hash/
2d3b007613940def7a5ec9d6d635937b-Abstract-Conference.html

67. Sohn, J., Kang, S., Yoo, S.: Arachne: Search-based repair of deep neural networks.
In ACM Trans. Softw. Eng. Methodol. (2023), https://doi.org/10.1145/3563210

68. Solar-Lezama, A.: Program synthesis by sketching. University of California, Berke-
ley (2008)

69. Sotoudeh, M., Thakur, A.V.: Correcting deep neural networks with small, gener-
alizing patches. In NeurIPS Workshop (2019), https://thakur.cs.ucdavis.edu/
assets/pubs/SRDM2019.pdf

70. Sotoudeh, M., Thakur, A.V.: Provable repair of deep neural networks. In PLDI
(2021), https://doi.org/10.1145/3453483.3454064

71. Su, J., Vargas, D.V., Sakurai, K.: One pixel attack for fooling deep neural networks.
CoRR abs/1710.08864 (2017), http://arxiv.org/abs/1710.08864

72. Sun, B., Sun, J., Pham, L.H., Shi, T.: Causality-based neural network repair. In
ICSE (2022), https://doi.org/10.1145/3510003.3510080

73. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I.J.,
Fergus, R.: Intriguing properties of neural networks. In ICLR (2014), http://
arxiv.org/abs/1312.6199

74. Tao, Z., Nawas, S., Mitchell, J., Thakur, A.V.: Architecture-preserving provable re-
pair of deep neural networks. In PLDI (2023), https://doi.org/10.1145/3591238

75. Tolstikhin, I.O., Houlsby, N., Kolesnikov, A., Beyer, L., Zhai, X., Un-
terthiner, T., Yung, J., Steiner, A., Keysers, D., Uszkoreit, J., Lu-
cic, M., Dosovitskiy, A.: Mlp-mixer: An all-mlp architecture for vi-
sion. In NeurIPS (2021), https://proceedings.neurips.cc/paper/2021/hash/
cba0a4ee5ccd02fda0fe3f9a3e7b89fe-Abstract.html

76. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training
data-efficient image transformers & distillation through attention. In ICML (2021),
http://proceedings.mlr.press/v139/touvron21a.html

77. Usman, M., Gopinath, D., Sun, Y., Noller, Y., Pasareanu, C.S.: Nnrepair:
Constraint-based repair of neural network classifiers. In CAV (2021), https:
//doi.org/10.1007/978-3-030-81685-8_1

https://doi.org/10.1145/3290350
https://doi.org/10.1609/aaai.v34i07.6871
https://proceedings.neurips.cc/paper/2020/hash/f9fd2624beefbc7808e4e405d73f57ab-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/f9fd2624beefbc7808e4e405d73f57ab-Abstract.html
https://doi.org/10.1145/2863701
https://proceedings.neurips.cc/paper/2019/hash/7503cfacd12053d309b6bed5c89de212-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/7503cfacd12053d309b6bed5c89de212-Abstract.html
http://arxiv.org/abs/1409.1556
http://papers.nips.cc/paper_files/paper/2023/hash/2d3b007613940def7a5ec9d6d635937b-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/2d3b007613940def7a5ec9d6d635937b-Abstract-Conference.html
https://doi.org/10.1145/3563210
https://thakur.cs.ucdavis.edu/assets/pubs/SRDM2019.pdf
https://thakur.cs.ucdavis.edu/assets/pubs/SRDM2019.pdf
https://doi.org/10.1145/3453483.3454064
http://arxiv.org/abs/1710.08864
https://doi.org/10.1145/3510003.3510080
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1312.6199
https://doi.org/10.1145/3591238
https://proceedings.neurips.cc/paper/2021/hash/cba0a4ee5ccd02fda0fe3f9a3e7b89fe-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/cba0a4ee5ccd02fda0fe3f9a3e7b89fe-Abstract.html
http://proceedings.mlr.press/v139/touvron21a.html
https://doi.org/10.1007/978-3-030-81685-8_1
https://doi.org/10.1007/978-3-030-81685-8_1


28 T. Yuviler, D. Drachsler-Cohen

78. Wightman, R.: Pytorch image models (2019). https://doi.org/10.5281/zenodo.
4414861, https://github.com/rwightman/pytorch-image-models

79. Wong, E., Rice, L., Kolter, J.Z.: Fast is better than free: Revisiting adversarial
training. In ICLR (2020), https://openreview.net/forum?id=BJx040EFvH

80. Wu, Y., Liu, F., Simon-Gabriel, C., Chrysos, G., Cevher, V.: Robust NAS under
adversarial training: benchmark, theory, and beyond. In ICLR (2024), https://
openreview.net/forum?id=cdUpf6t6LZ

81. Xiao, C., Zhong, P., Zheng, C.: Enhancing adversarial defense by k-winners-take-
all. In ICLR (2020), https://openreview.net/forum?id=Skgvy64tvr

82. Xie, C., Wang, J., Zhang, Z., Ren, Z., Yuille, A.L.: Mitigating adversarial ef-
fects through randomization. In ICLR (2018), https://openreview.net/forum?
id=Sk9yuql0Z

83. Xie, C., Wu, Y., van der Maaten, L., Yuille, A.L., He, K.: Fea-
ture denoising for improving adversarial robustness. In CVPR (2019),
http://openaccess.thecvf.com/content_CVPR_2019/html/Xie_Feature_
Denoising_for_Improving_Adversarial_Robustness_CVPR_2019_paper.html

84. Yuan, X., He, P., Zhu, Q., Li, X.: Adversarial examples: Attacks and defenses
for deep learning. In IEEE Trans. Neural Networks Learn. Syst. (2019), https:
//doi.org/10.1109/TNNLS.2018.2886017

85. Zagoruyko, S., Komodakis, N.: Wide residual networks. In BMVC (2016), https:
//bmva-archive.org.uk/bmvc/2016/papers/paper087/index.html

86. Zhang, Q., Zhang, C., Li, C., Song, J., Gao, L., Shen, H.T.: Practical no-
box adversarial attacks with training-free hybrid image transformation. CoRR
abs/2203.04607 (2022), https://doi.org/10.48550/arXiv.2203.04607

87. Zheng, M., Yan, X., Zhu, Z., Chen, H., Wu, B.: Blackboxbench: A comprehen-
sive benchmark of black-box adversarial attacks. CoRR abs/2312.16979 (2023),
https://doi.org/10.48550/arXiv.2312.16979

https://doi.org/10.5281/zenodo.4414861
https://doi.org/10.5281/zenodo.4414861
https://doi.org/10.5281/zenodo.4414861
https://doi.org/10.5281/zenodo.4414861
https://github.com/rwightman/pytorch-image-models
https://openreview.net/forum?id=BJx040EFvH
https://openreview.net/forum?id=cdUpf6t6LZ
https://openreview.net/forum?id=cdUpf6t6LZ
https://openreview.net/forum?id=Skgvy64tvr
https://openreview.net/forum?id=Sk9yuql0Z
https://openreview.net/forum?id=Sk9yuql0Z
http://openaccess.thecvf.com/content_CVPR_2019/html/Xie_Feature_Denoising_for_Improving_Adversarial_Robustness_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Xie_Feature_Denoising_for_Improving_Adversarial_Robustness_CVPR_2019_paper.html
https://doi.org/10.1109/TNNLS.2018.2886017
https://doi.org/10.1109/TNNLS.2018.2886017
https://bmva-archive.org.uk/bmvc/2016/papers/paper087/index.html
https://bmva-archive.org.uk/bmvc/2016/papers/paper087/index.html
https://doi.org/10.48550/arXiv.2203.04607
https://doi.org/10.48550/arXiv.2312.16979

	Enhancing Neural Network Robustness via Synthesis of Repair Programs

