
Quantization with Guaranteed Floating-Point Neural
Network Classifications
ANAN KABAHA, Technion, Israel
DANA DRACHSLER COHEN, Technion, Israel

Despite the wide success of neural networks, their computational cost is very high. Quantization techniques

reduce this cost, but it can result in changing the classifications of the original floating-point network, even

if the training is quantization-aware. In this work, we rely on verification to design correction systems that

detect classification inconsistencies at inference time and eliminate them. The key idea is to overapproximate

the space of inconsistent inputs with their maximal classification confidence. The main challenge in computing

this confidence is that it involves analyzing a quantized network, which introduces a very high degree of

nonlinearity, over all possible inputs. We propose CoMPAQt, an algorithm for computing this confidence.

CoMPAQt relies on a novel encoding of quantization in mixed-integer linear programming (MILP), along

with customized linear relaxations to reduce the high complexity. To prune the search space, it ties the

computations of the quantized network and its floating-point counterpart. Given this confidence, we propose

two correction mechanisms. The first mechanism guarantees to return the classification of the floating-point

network and relies on networks with increasing bit precisions. The second mechanism mitigates classification

inconsistencies by an ensemble of quantized networks. We evaluate our approach on MNIST, ACAS-Xu, and

tabular datasets over fully connected and convolutional networks. Results show that our first correction

mechanism guarantees 100% consistency with the floating-point network’s classifications while reducing

its computational cost by 3.8x, on average. Our second mechanism reaches an almost perfect consistency

guarantee in our experiments while reducing the computational cost by 4.1x. Our work is the first to provide

a formal guarantee on the classification consistency of a quantized network.

CCS Concepts: • Theory of computation→ Program analysis; Program verification; • Software and
its engineering→ Formal methods; • Computing methodologies→ Neural networks.

Additional Key Words and Phrases: Neural Network Verification, Neural Network Quantization

ACM Reference Format:
Anan Kabaha and Dana Drachsler Cohen. 2025. Quantization with Guaranteed Floating-Point Neural Network

Classifications. Proc. ACM Program. Lang. 9, OOPSLA2, Article 340 (October 2025), 28 pages. https://doi.org/10.
1145/3763118

1 Introduction
Neural network classifiers have achieved remarkable success in various applications. However,

their execution exhibits high computational complexity, leading to significant power consumption

and large memory allocations, making them difficult to deploy on resource-constrained devices

such as mobile phones and edge devices [Goodfellow et al. 2016; Li et al. 2019; Lin et al. 2020; Liu

et al. 2021; Luo et al. 2023; Tan and Le 2019]. To address these challenges, many works leverage

quantization, a technique that reduces the precision of a neural network’s weights and activations

from floating-point to lower-bit precisions (e.g., 8-bit or 12-bit) [Banner et al. 2019; Chauhan et al.

2023; Dong et al. 2019; Hubara et al. 2021; Jacob et al. 2018; Shen et al. 2024; Wang et al. 2018;

Authors’ Contact Information: Anan Kabaha, Technion, Haifa, Israel, anan.kabaha@campus.technion.ac.il; Dana Drachsler

Cohen, Technion, Haifa, Israel, ddana@ee.technion.ac.il.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2025 Copyright held by the owner/author(s).

ACM 2475-1421/2025/10-ART340

https://doi.org/10.1145/3763118

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 340. Publication date: October 2025.

https://orcid.org/0000-0002-0969-6169
https://orcid.org/0000-0001-6644-5377
https://doi.org/10.1145/3763118
https://doi.org/10.1145/3763118
https://orcid.org/0000-0002-0969-6169
https://orcid.org/0000-0001-6644-5377
https://orcid.org/0000-0001-6644-5377
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3763118

340:2 Anan Kabaha and Dana Drachsler Cohen

Yao et al. 2024; Yuan et al. 2023; Zhao et al. 2023; Zhuang et al. 2018]. Quantization significantly

reduces power consumption, memory usage, and computation time. However, it also modifies the

parameters of the floating-point network. This modification can cause the quantized network to

change the classification of some inputs compared to the floating-point network, undermining its

reliability. For example, an 8-bit quantized network for ACAS-Xu [Julian et al. 2018] can predict

paths that are very far (over 13 miles apart) from the paths of the floating-point network (Section 6).

The main quantization approaches are post-training quantization and quantization-aware train-

ing. Post-training quantization (PTQ) employs quantization after training a floating-point net-

work [Chauhan et al. 2023; Shen et al. 2024]. Some of these approaches check several quantization

schemes and return a quantized network with the best accuracy. Quantization-aware training

(QAT) integrates quantization into the training process of a floating-point network, enabling the

trained network to better adapt to the quantization performed after training completes [Jacob et al.

2018; Wang et al. 2018; Zhuang et al. 2018]. While these approaches aim to mitigate the impact of

quantization on the network’s classification, they have no formal guarantee. In particular, their

effectiveness is typically evaluated empirically by comparing the quantized classifier’s performance

against its floating-point counterpart on a test set — and even on this limited set, their performance

is not always perfect. In many cases, it is critical to understand and guarantee the consistency of

quantized networks with their floating-point counterparts over a broader range of inputs, especially

those not represented in the test set. This is particularly important in safety-critical applications for

mobile and edge devices (e.g., health monitors, advanced driver assistance systems, and autonomous

vehicles), where networks face inputs that may differ from those included in the test set.

To address this, several works study quantization reliability under input distribution shifts, noise,

or input augmentations [Hu et al. 2022; Yuan et al. 2023]. Others propose verifiers that analyze

the local robustness of a quantized network in given neighborhoods of inputs [Huang et al. 2024;

Lin et al. 2021; Zhang et al. 2022]. Yet these works offer limited guarantees (whether empirical or

formal) over a constrained set of inputs. Beyond analyzing the reliability of quantized networks, it

is crucial to correct classifications that are inconsistent because of the quantization. In this work,

we address the question: Given a network classifier and a quantization scheme, can we identify all
classification inconsistencies of the quantized network and mitigate them?

We propose a new property over neural network classifiers that overapproximates all classifica-
tion inconsistencies caused by the quantization with their maximal classification confidence. We call

this property the Quantized Error compared to Floating-point (QEF) bound. It provides an effective

way to identify whether any (unseen) input may be classified differently due to the quantization.

Beyond the formal guarantee for every possible input, this property can be leveraged by different

correction mechanisms to reduce and even eliminate the quantization classification inconsistencies.

This opens a new paradigm for quantizing networks via formal verification analysis.

Computing the QEF bound is highly challenging because it involves reasoning about a quan-

tized network, whose computations are highly nonlinear. Generally, the quantized computations

transform the output of every neuron into a piecewise linear function whose number of linear

pieces grows exponentially with the bit precision. As a reference point, a (floating-point) neuron

performing the popular ReLU activation function computes a piecewise linear function over two

linear pieces, and this function type alone makes the analysis of safety properties over a neural

network NP-hard [Katz et al. 2017]. In contrast, an 8-bit neuron performing the popular ReLU

activation function computes a piecewise linear function consisting of 2
8
linear pieces. Additionally,

QEF is a global property, requiring to consider every possible input (not restricted to a dataset).

We introduce CoMPAQt, an algorithm for computing the QEF bound. CoMPAQt relies on several

ideas. First, it relies on a novel mixed-integer linear programming (MILP) encoding for quantization.

For each quantized ReLU activation function, our encoding introduces two boolean variables to

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 340. Publication date: October 2025.

Quantization with Guaranteed Floating-Point Neural Network Classifications 340:3

precisely encode the bounded range of the quantized ReLU and overapproximates the discrete values

in the quantized ReLU’s range with linear constraints bounding a parallelogram. To reduce this

encoding’s complexity, CoMPAQt also employs a trapezoid linear relaxation if its overapproximation

error is not too high. CoMPAQt further prunes the search space by tying the computations of the

quantized network and its floating-point counterpart. This is obtained by deriving linear constraints

over respective neurons by bound propagation and MILP optimization.

Based on the QEF bounds, CoMPAQt constructs corrected access to the quantized network. We

propose two correction mechanisms. The first correction mechanism employs adaptive quantization

precision refinement, relying on networks with increasing precision levels. At inference, the

corrected access looks for the lowest-bit quantized network whose classification is consistent with

the floating-point network. This mechanism guarantees to return consistent classifications, for

every possible input, while minimizing the computational cost. To the best of our knowledge, this

is the first quantization mechanism which is guaranteed to be fully consistent with the floating-

point network for all inputs. This correction mechanism is especially suitable for settings where

deploying high bit precision networks is feasible, but reducing the computational cost (e.g., power

consumption) is critical. The second correctionmechanism relies on an ensemble of low bit precision

networks. At inference, it looks for a quantized network whose classification is consistent. If none

is found, it returns a classification and signals the user that it may be inconsistent. In practice, this

mechanism significantly improves the classification consistency. Its advantage is that it relies solely

on lower bit precision networks, thus it is better suited for extremely resource-constrained settings.

We evaluate CoMPAQt on two tabular datasets, the MNIST image dataset, and the ACAS-Xu

system. We evaluate on fully connected and convolutional networks. We compare to PTQ and

QAT. Our results show that the adaptive precision refinement mechanism obtains 100% consistency

guarantee for every input while reducing the computational cost of the floating-point network

by 3.8x. The baselines do not obtain perfect consistency on the test set but have lower cost than

CoMPAQt by 1.4x. The low-bit ensemble mechanism achieves 99.994% consistency on the test set,

reduces the computational cost by 4.1x, and its overhead compared to the baselines is 1.03x. We

show similar results for out-of-distribution inputs generated by common image corruptions (e.g.,

snow). Lastly, we evaluate CoMPAQt on a case study of ACAS-Xu, showing that it precisely predicts

the floating-point network’s flight trajectories, unlike the baselines that deviate by 65.83 miles.

2 Background onQuantized Networks
In this section, we provide background on quantized networks.

Quantization is a technique for reducing the computational time and memory consumption of

neural networks [Banner et al. 2019; Jacob et al. 2018; Shen et al. 2024; Zhuang et al. 2018]. Its

idea is to approximate continuous floating-point values of weights and activations with discrete

values. This is achieved by lower bit precisions such as 8-bit or 16-bit (denoted INT8 or INT16).

This process significantly reduces the network’s memory consumption and power consumption.

Quantization is typically defined over three parameters: the scale factor 𝑠 , the zero-point 𝑝 , and

the bit-width 𝑏 [Nagel et al. 2021]. The scale factor and zero-point parameters define how to map a

floating-point value to a discrete integer. The range of integers, called the quantization grid, depends
on the bit-width parameter 𝑏. An example of a grid is the unsigned integer set {0, . . . , 2𝑏 − 1}. Given
(𝑠, 𝑝, 𝑏), a quantization stepmaps a real number 𝑥 to an integer: 𝑥𝑞 = clamp(⌊𝑥/𝑠⌉ +𝑝), where ⌊·⌉
rounds to the nearest integer and clamp ensures that the quantized value is within the quantization

grid. For example, for the grid {0, . . . , 2𝑏 − 1}, clamp
0,2𝑏−1 (𝑦) returns 0 if 𝑦 < 0, it returns 2

𝑏 − 1, if
𝑦 > 2

𝑏 − 1; otherwise, it returns 𝑦. A dequantization step maps a quantized value 𝑥𝑞 to a real

number: 𝑥 = 𝑠 (𝑥𝑞 − 𝑝). For example, given a real-valued input 𝑥 = 3.7, a scale factor 𝑠 = 0.1, a

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 340. Publication date: October 2025.

340:4 Anan Kabaha and Dana Drachsler Cohen

zero-point 𝑝 = 10, a bit-width 𝑏 = 8, and the grid {0, . . . , 255}, the quantized value is computed

as: 𝑥𝑞 = clamp
0,255 (⌊3.7/0.1⌉ + 10) = 47. The dequantized value is: 𝑥 = 0.1 · (47 − 10) = 3.7,

accurately recovering the original value in this case. Quantization can introduce two types of

errors: rounding errors and clipping errors. A rounding error stems from the composition of

𝑠 (clamp
0,2𝑏−1 (⌊𝑥/𝑠⌉ + 𝑝) − 𝑝) and it is within the range [−𝑠/2, 𝑠/2]. For example, for 𝑥 = 3.75,

𝑥𝑞 = clamp
0,255 (⌊3.75/0.1⌉ +10) = 48. The dequantized value is 𝑥 = 0.1 · (48−10) = 3.8, introducing

a quantization error of 0.05. A clipping error occurs when the quantized value is clamped. For

example, for 𝑥 = 30, we have 𝑥𝑞 = clamp
0,255 (⌊30/0.1⌉ + 10) = 255 and 𝑥 = 0.1 · (255 − 10) = 24.5,

introducing a quantization error of 5.5.

Various quantization approaches have been proposed for neural networks, including ones that

quantize the weights, the activation outputs, or both. We focus on the popular approach that

quantizes the weights and activation outputs [Nagel et al. 2021]. To formally define it, we first

define a neural network. A neural network is a directed layered graph, whose edges are associated

with weights and its nodes (neurons) are associated with parameters called biases. Figure 1(a) shows

an example of a network. The set of edges and the computations associated with them depend

on the layer’s type. We focus on fully connected layers, but our implementation also supports

convolutional layers and is extensible to max-pooling [LeCun et al. 1998] and residual layers [He

et al. 2016]. In a fully connected layer, a neuron has an incoming edge from every neuron in the

previous layer. We denote by 𝑧𝑚,𝑘 the 𝑘 ∈ [𝑘𝑚] neuron in layer𝑚 ∈ [𝐿], and denote by 𝑧0,𝑘 for

𝑘 ∈ [𝑑] a neuron in the input layer. The neuron’s weights are denoted by𝑤𝑚,𝑘,𝑘 ′ , for all 𝑘
′ ∈ [𝑘𝑚−1],

and its bias is denoted by 𝑏𝑚,𝑘 . Its computation consists of an affine computation and a nonlinear

computation, defined by an activation function. We focus on the ReLU activation. Formally, a

neuron computes the affine function: 𝑧𝑚,𝑘 = 𝑏𝑚,𝑘 +
∑
𝑘 ′∈[𝑘𝑚−1] 𝑤𝑚,𝑘,𝑘 ′ · 𝑧𝑚−1,𝑘 ′ , and then invokes

ReLU: 𝑧𝑚,𝑘 = 𝑅𝑒𝐿𝑈 (𝑧𝑚,𝑘) =max(0, 𝑧𝑚,𝑘). We note that ReLU is not invoked at the last layer.

In a floating-point network, all weights, biases, and activation outputs are real numbers. Figure 1(a)

shows an example of a floating-point network. The computation of the network is executed by

propagating a given input layer-by-layer. At every layer, (1) the inputs are multiplied by their

weights (denoted on the edges) and summed 𝑧Σ =
∑
𝑘 ′ 𝑤𝑘 ′ ·𝑧𝑘 ′ , then (2) the bias is added 𝑧 = 𝑏𝑧 +𝑧Σ

(denoted by +), and (3) ReLU is invoked 𝑧 = 𝑅𝑒𝐿𝑈 (𝑧) (denoted by the ReLU sign). To illustrate the

computation, consider the input (0.8, 0). First, it is multiplied by the weights (0.9 and 0.4 for the

first neuron) and summed, then the bias is added (−0.63 for the first neuron) and ReLU is invoked.

In a quantized network, the weights, the input layer, and the activation outputs are quantized, but

the bias and the affine computations are not quantized [Nagel et al. 2021]. We focus on symmetric

uniform quantization with zero-points 𝑝 = 0, however our algorithms extend to other quantization

schemes. A quantization scheme for a neural network consists of a scale factor 𝑠𝑚 for the inputs to

layer𝑚, a scale factor 𝑠𝑚,𝑊 for the weights of layer𝑚, and a bit-width 𝑏. That is, a quantization

scheme is a pair (𝑆, 𝑏) where 𝑆 is a set of pairs (𝑠𝑚, 𝑠𝑚,𝑊) for every layer𝑚. We assume the inputs’

grid is {0, . . . , 2𝑏 − 1} and the weights’ grid is {−2𝑏−1, . . . , 2𝑏−1 − 1}. Figure 1(b) shows an example

of a quantized network for the network in Figure 1(a), where, for simplicity, ∀𝑚. 𝑠𝑚 = 𝑠𝑚,𝑊 = 1/15
and 𝑏 = 4. The computation of the quantized network is executed layer-by-layer. At every layer,

(1) the inputs are quantized (denoted by the steps icon), (2) multiplied by their weights and summed

(their sum is in floating-point), (3) the sum is dequantized (denoted by the straight line), then

(4) the bias is added, and (5) ReLU is invoked. To illustrate, consider the input (0.8, 0). First, it is
quantized to (12, 0), then multiplied by the weights (14 and 6 for the first neuron) and summed

(i.e., 12 · 14 + 0 · 6). The weighted sum is dequantized and added the bias (−0.63 for the first

neuron). Then, ReLU is invoked and its output passes to the next layer, which performs the same

process. We observe that in the setting of analyzing quantized networks, the dequantization and

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 340. Publication date: October 2025.

Quantization with Guaranteed Floating-Point Neural Network Classifications 340:5

++

+
0

+

Floating-Point Classifier

+

+

+

4-bit Quantized Classifier
INT4 INT4 FP32 INT4 INT4 FP32

(𝒂)

0.9

0

0.4

1

-0.63
1

0

1

1

00.7|0.8

0|0 0|0

0|0.09 0|0.09

0.01|0.01

14

0

6

15

0.7|0.8

0|0

11|12

0|0

-0.63

0

FP32

15

15

0

15

1|2

0|0

FP32

0.06|0.13

0.01|0.01

0.01

0

0.01

(𝒃)

+

+

+
𝑹𝒆𝑳𝑼

𝑹𝒆𝑳𝑼

𝑹𝒆𝑳𝑼

𝑹𝒆𝑳𝑼

𝑫𝒆𝑸

𝑫𝒆𝑸

𝑫𝒆𝑸

𝑫𝒆𝑸

𝑸

𝑸

𝑸

𝑸

+

++

+

+

Fig. 1. (a) A floating-point network 𝑁 and (b) its quantized network 𝑁𝑞 . 𝑁𝑞 is classification inconsistent with
𝑁 for the input (0.7, 0) (its computations for both networks are shown on the left, in blue). 𝑁𝑞 is classification
consistent with 𝑁 for (0.8, 0) (its computations are shown on the right, in green).

the computation of the weighted sum are commutative. Accordingly, we define the computations

of a quantized network as follows. For every 𝑘 ∈ [𝑑], we define 𝜁0,𝑘 as the dequantization of the

quantized input: 𝜁0,𝑘 = 𝑠0 · clamp0,2𝑏−1 (⌊𝑥𝑘/𝑠0⌉). For every neuron 𝑘 in layer𝑚 ∈ [𝐿], we denote
by

ˆ𝜁𝑚,𝑘 the dequantization of the weights composed with the weighted sum and bias addition, i.e.,

ˆ𝜁𝑚,𝑘 = 𝑏𝑚,𝑘+𝑠𝑚,𝑊 ·
∑
𝑘 ′ 𝑤

𝑞

𝑚,𝑘,𝑘 ′ ·𝜁𝑚−1,𝑘 ′ , where𝑤
𝑞

𝑚,𝑘,𝑘 ′ = clamp
0,2𝑏−1 (⌊𝑤𝑚,𝑘,𝑘 ′/𝑠𝑚,𝑊 ⌉), and we denote

by 𝜁𝑚,𝑘 the dequantization of the quantized ReLU: 𝜁𝑚,𝑘 = 𝑠𝑚 · clamp0,2𝑏−1 (⌊𝑅𝑒𝐿𝑈 (ˆ𝜁𝑚,𝑘)/𝑠𝑚⌉).
In the following, we denote a floating-point network by 𝑁 and its quantized counterpart by

𝑁𝑞 . We note that there are different ways to compute a quantized network, e.g., by post-training

quantization (PTQ) [Banner et al. 2019; Hubara et al. 2021; Zhang et al. 2023], quantization-aware

training (QAT) [Jacob et al. 2018; Zhuang et al. 2018], or mixed-precision strategies [Chauhan et al.

2023; Dong et al. 2019; Yang et al. 2024]. The exact process of network’s quantization is orthogonal

to our work, we merely require to have a floating-point network and a quantization scheme.

3 Our Property:Quantization Inconsistent Classifications
In this section, we present a property for quantized network classifiers, which captures the inputs

that a quantized network may classify differently from its floating-point network, due to quanti-

zation errors. We begin with defining classification inconsistency, then motivate and define our

property, and finally discuss the challenge of proving it.

Classification inconsistencies. We focus on neural networks that act as classifiers. A classifier 𝑁

maps an input 𝑥 ∈ [0, 1]𝑑 to a score vector over a set of classes 𝐶 . The classification of 𝑁 for 𝑥

is the class maximizing the score: 𝑐 = argmax(𝑁 (𝑥)). Because the role of a classifier is to assign
a class, the exact values in the score vector are less important, which enables to tolerate some

quantization rounding and clipping errors. We say a quantized classifier is classification consistent

for an input if it classifies the input the same as the floating-point network. Formally, given a

quantized network 𝑁𝑞 , its floating-point network 𝑁 , and an input 𝑥 , we say that 𝑁𝑞 is classification
consistent with 𝑁 for 𝑥 if argmax(𝑁𝑞 (𝑥)) = argmax(𝑁 (𝑥)). For example, for 𝑁𝑞 and 𝑁 in Figure 1,

𝑁𝑞 is classification consistent with 𝑁 for 𝑥 = (0.8, 0), since they classify 𝑥 the same. However, 𝑁𝑞
is classification inconsistent with 𝑁 for 𝑥 = (0.7, 0), since they classify it differently.

Goal. Our goal is to identify all classification inconsistencies at inference time (i.e., given an input

for𝑁𝑞) and correct them. There are two impractical ways to identify all classification inconsistencies.

First, a static exhaustive search, where a preprocessing step propagates every input through both

networks and stores the inconsistent inputs. However, this is infeasible since the space of inputs

is too large in practice. Second, a dynamic approach, where at inference time, given an input to

classify, the input is propagated through both the quantized network and the floating-point network.

However, this approach defeats the purpose of using a quantized network to save resources.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 340. Publication date: October 2025.

340:6 Anan Kabaha and Dana Drachsler Cohen

Key idea. We identify a condition on the output of a quantized network 𝜑 (𝑁𝑞 (𝑥)) that, if satisfied,
implies that 𝑁𝑞 may be classification inconsistent with 𝑁 for 𝑥 . The advantage of such a condition

is that it can be efficiently checked at inference time, with negligible overhead since either way 𝑥

is propagated through 𝑁𝑞 . If the condition holds, we invoke a correction mechanism, which may

be less resource efficient. This enables us to keep the efficiency of the quantized network for inputs

that 𝑁𝑞 is guaranteed to be classification consistent. Conceptually, this condition partitions the

input space into two parts: one containing all inputs that introduce classification inconsistencies

(but may contain other inputs) and another part that does not contain any input that introduces

a classification inconsistency. Our condition builds on the observation that the differences of

a quantized network and its floating-point network stem from their differences in the decision

boundaries. That is, the classification inconsistent inputs are close to the decision boundary of the

quantized network. This is illustrated in Figure 2(a). In this example, we consider a synthetic dataset

over inputs (𝑥1, 𝑥2) ∈ [0, 1]2 classified to a class in 𝐶 = {0, 1}. We train a floating-point classifier 𝑁

and compute a 4-bit quantized network 𝑁𝑞 . The figure shows the decision boundaries of 𝑁 (in black

line) and of 𝑁𝑞 (in red line). The classification inconsistencies are relatively close to the decision

boundaries. In particular, the maximal distance of any input classified differently by 𝑁 and 𝑁𝑞 from

the decision boundary of 𝑁𝑞 is relatively small. We capture it by the classification confidence of
the quantized network, which is an arithmetic expression over its output vector. We then define a

condition 𝜑 (𝑁𝑞 (𝑥)) that overapproximates the classification inconsistencies with their maximal

classification confidence, called the QEF bound. We next provide the formal definitions.

The QEF bound. Given a quantized network 𝑁𝑞 , an input 𝑥 and a class 𝑐 ∈ 𝐶 , the classification
confidence is the difference between the score 𝑁𝑞 assigns to 𝑐 given 𝑥 and the maximal score of the

other classes: C𝑐
𝑁𝑞
(𝑥) = 𝑁𝑞 (𝑥)𝑐 −max𝑐′≠𝑐 𝑁𝑞 (𝑥)𝑐′ . Given a quantized network 𝑁𝑞 , its floating-point

network 𝑁 and a class 𝑐 ∈ 𝐶 , the Quantized Error compared to Floating-Point (QEF) bound 𝑑𝑐 ∈ R+ is
the maximal classification confidence of any input that 𝑁𝑞 classifies as 𝑐 and 𝑁 classifies differently:

𝑑𝑐 =maxC𝑐𝑁𝑞
(𝑥) subject to argmax(𝑁𝑞 (𝑥)) = 𝑐 ∧ argmax(𝑁 (𝑥)) ≠ 𝑐 (1)

Given 𝑑𝑐 , our condition to identify inputs which may introduce classification inconsistency for 𝑐 is:

𝜑𝑐 (𝑁𝑞 (𝑥)) = C𝑐𝑁𝑞
(𝑥) ≤ 𝑑𝑐

If 𝑑𝑐 = 0, this condition is not satisfied by any input that 𝑁𝑞 classifies as 𝑐 . Namely, every input that

𝑁𝑞 classifies as 𝑐 is also classified as 𝑐 by 𝑁 and no correction is needed. If 𝑑𝑐 =max{C𝑐
𝑁𝑞
(𝑥) | 𝑥 ∈

[0, 1]𝑑 } (the maximum confidence of 𝑁𝑞 for 𝑐), then every input that 𝑁𝑞 classifies as 𝑐 may introduce

a classification inconsistency and all these inputs are required to be corrected. Note that our bound

is sound but imprecise: it overapproximates the set of inputs introducing classification inconsistency.

We call the input space satisfying the condition 𝜑𝑐 (𝑁𝑞 (𝑥)) the non-QEF space, since these inputs
may introduce classification inconsistency, and the input space not satisfying 𝜑𝑐 (𝑁𝑞 (𝑥)) the QEF
space, since these inputs are classification consistent.

Illustration. Figures 2(a)–(d) illustrate the inputs satisfying our condition, for different values

of bounds 𝑑 ′𝑐 defining the condition C𝑐
𝑁𝑞
(𝑥) ≤ 𝑑 ′𝑐 (i.e., not just the maximal bounds 𝑑𝑐 that are the

QEF bounds). The background of these figures is split into colored and pink. The pink background

shows the non-QEF space with respect to 𝑑 ′𝑐 , while the colored background shows the QEF space.
The colored background is a heatmap of the inputs’ classification confidences. The darker the color,

the lower the classification confidence of 𝑁𝑞 . In Figure 2(a), 𝑑 ′𝑐 = 0, thus all inputs are in the QEF
space. However, this is an incorrect (unsound) partitioning of the input domain, since this QEF space
includes inputs that are classified differently by 𝑁𝑞 and 𝑁 (i.e., they are classification inconsistent).

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 340. Publication date: October 2025.

Quantization with Guaranteed Floating-Point Neural Network Classifications 340:7

4-bit quantized classifier's decision boundary ≤ QEFFP classifier's decision boundary

(𝒂) (𝒃) (𝒄) (𝒅)

𝒅𝒄=𝟎
′ = 𝟎, 𝒅𝒄=𝟏

′ = 𝟎 𝒅𝒄=𝟏 = 𝟕. 𝟑 𝒅𝒄=𝟎 = 𝟏𝟎. 𝟑 𝒅𝒄=𝟎
′ = 𝟒𝟓, 𝒅𝒄=𝟏

′ = 𝟏𝟓𝓒𝑵𝒒

𝒄 = 𝟏

𝒄 = 𝟎

𝒙𝟏

𝒙𝟐

𝒙𝟏 𝒙𝟏 𝒙𝟏

Fig. 2. The inputs satisfying C𝑐
𝑁𝑞
(𝑥) ≤ 𝑑′𝑐 (pink background) for different values of 𝑑′𝑐 ∈ {0, 𝑑𝑐=1, 𝑑𝑐=0, 15, 45},

where𝑑𝑐=1, 𝑑𝑐=0 are the QEF bounds of classes 0 and 1. Values lower than𝑑𝑐 underapproximate the classification
inconsistencies of class 𝑐 , while values greater or equal to 𝑑𝑐 overapproximate them.

In Figure 2(b), 𝑑 ′𝑐=1 = 𝑑𝑐=1 (the QEF bound of class 𝑐1). This bound is the maximal bound at which

there is an input classified as 𝑐1 by 𝑁𝑞 but as 𝑐0 by 𝑁 . All inputs in its QEF space are classified as

𝑐1 by both networks. In Figure 2(c), 𝑑 ′𝑐=0 = 𝑑𝑐=0 (the QEF bound of class 𝑐0). Note that these QEF
bounds are tight: there exists an input 𝑥 classified as 𝑐 by 𝑁𝑞 with confidence equal to 𝑑𝑐 but as

the other class by 𝑁 and there is no 𝑥 ′ that is classified as 𝑐 with confidence higher than 𝑑𝑐 that

is classified as the other class by 𝑁 . Still, the non-QEF space overapproximates the classification

inconsistent inputs: Figure 2(b) shows inputs classified by 𝑁𝑞 and 𝑁 as 𝑐 = 1 whose confidence is

lower than 𝑑𝑐=1. Larger bounds than the QEF bounds provide a sound partitioning of the input space,
but they increase the overapproximation error, leading to unnecessary corrections. For example, in

Figure 2(d), the non-QEF space soundly overapproximates the classification inconsistent inputs of

both classes, but its overapproximation error is very high: nearly half of the input space is in the

non-QEF input space, even though most of these inputs are classified the same by 𝑁𝑞 and 𝑁 .

Challenges. Computing the QEF bound of every class is challenging because it is a global property
over all 𝑥 ∈ [0, 1]𝑑 , and over two networks with nonlinear computations. This problem’s complexity

is exponential in the bit-width of the quantized network multiplied by its number of neurons.

4 Overview on Computing the QEF Bound
In this section, we overview the computation of the QEF bound. We phrase it as mixed-integer

linear programming (MILP) with customized linear relaxations to balance precision and scalability.

To further scale, we add constraints over the quantized network and its floating-point network.

QEF with MILP. The QEF bound (Equation (1)) is a constrained optimization over two networks.

Many verifiers for neural networks rely on MILP for certifying local robustness of floating-point net-

works [Müller et al. 2022; Singh et al. 2019b; Tjeng et al. 2019] and quantized networks [Huang et al.

2024; Lin et al. 2021], global robustness [Kabaha and Drachsler-Cohen 2024; Wang et al. 2022a,b],

and privacy properties [Kabaha and Drachsler-Cohen 2025; Reshef et al. 2024]. However, our prop-

erty poses a new challenge: it is a global property and over quantization (𝑥𝑞 = clamp
0,2𝑏−1 (⌊𝑥/𝑠⌉)).

This requires encoding in MILP new operations: the steps operation ⌊·⌉ and the clipping operation

clamp
0,2𝑏−1. We note that the dequantization step (𝑥 = 𝑠 · 𝑥𝑞) is directly expressible as a linear

constraint. It is possible to precisely encode the steps operation and the clipping operation in MILP.

However, the complexity is too high to be effective in practice because precisely encoding ⌊·⌉
requires 𝑏 boolean variables (to capture its 2

𝑏
steps) and precisely encoding clamp

0,2𝑏−1 requires

two boolean variables (to capture its three cases: values below 0, above 2
𝑏 − 1, or in between).

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 340. Publication date: October 2025.

340:8 Anan Kabaha and Dana Drachsler Cohen

𝒂𝒒

(𝒂)

𝒃𝒒

𝜶𝟐
𝒅

ReLU

Quantized ReLU

(𝒄)

ReLU
Quantized ReLU
Parallelogram

(𝒅)

ReLU
Quantized ReLU
Trapezoid

𝒂𝒒
𝒂𝒒𝒂𝒒

𝜶𝟏
𝒅

𝜶𝟑
𝒅

𝜶𝟒
𝒅

𝒖𝒄

𝐈𝐧𝐟𝐞𝐚𝐬𝐢𝐛𝐥𝐞

𝚫𝐪

(𝒃)

𝒃𝒒

ReLU
Quantized ReLU
Clipped parallelogram

Fig. 3. Our linear relaxations for quantization. (a) A precise MILP encoding introduces 𝑏 + 2 boolean variables
for each dequantization of a quantized ReLU 𝜁𝑚,𝑘 . (b) Our parallelogram linear relaxation bounds the steps
operation instead of the 𝑏 booleans. (c) If the maximal possible value is at most 𝑠 · (2𝑏 − 1), we can eliminate
the boolean 𝑏𝑞 . (d) Otherwise, we can overapproximate the active part with a trapezoid.

Figure 3(a) illustrates the dequantization of the quantized ReLU 𝜁𝑚,𝑘 as a function of its input
ˆ𝜁𝑚,𝑘

and the 𝑏 + 2 booleans required to encode all its piecewise linear parts. In contrast, encoding a

floating-point ReLU computation requires one boolean variable. This means that our problem’s

complexity is 𝑂 (2(𝑏+2) · |𝑁 |) where |𝑁 | is the number of neurons in the quantized network.

Steps linear relaxation. We next introduce a customized linear relaxation for the steps operation,

instead of the MILP encoding that relies on 𝑏 boolean variables. Linear relaxations bound nonlinear

computations using lower and upper linear constraints. They have been shown to boost the analysis

of local robustness verifiers in floating-point networks [Müller et al. 2022; Singh et al. 2019a,b; Wang

et al. 2021]. Commonly, linear relaxations are linear constraints over the input to the ReLU neuron

and its real-valued lower and upper bounds. An example of a linear relaxation to 𝑧 = 𝑅𝑒𝐿𝑈 (𝑧),
where 𝑧 ∈ [𝑙, 𝑢] for 𝑙, 𝑢 ∈ R, is the triangle 𝑧 ≥ 0, 𝑧 ≥ 𝑧 and 𝑧 ≤ 𝑢 (𝑧−𝑙)

𝑢−𝑙 [Ehlers 2017]. Existing linear

relaxations are too coarse-grained for a quantized ReLU, resulting in a very high overapproximation

error and thus a very loose QEF bound, triggering unnecessary corrections. Instead, we perform a

linear relaxation to the steps operation with a parallelogram bounding the rounding errors (that are

in [−𝑠/2, 𝑠/2]). Additionally, we precisely encode the clipping operation with two boolean variables

𝑎𝑞 and 𝑏𝑞 . Figure 3(b) shows this parallelogram (dashed green lines) and the two boolean variables.

Infeasible clipping. Prior MILP verifiers reduce their complexity by eliminating booleans, which

is possible if some linear pieces are infeasible. We extend this approach to our setting and identify

infeasible outputs of ReLU. Like prior approaches, our identification relies on real-valued lower

and upper bounds for the weighted sum
ˆ𝜁 of every neuron (which are computed as part of the

analysis either way). Given bounds [𝑙, 𝑢] of ˆ𝜁 , if 𝑢 ≤ 𝑠 · (2𝑏 − 1), then clipping to 𝑠 · (2𝑏 − 1) is never
executed, enabling us to eliminate the boolean variable 𝑏𝑞 . We note that 𝑙 and 𝑢 are also used to

define the parallelogram. Figure 3(c) illustrates the case when clipping to 𝑠 · (2𝑏 − 1) is infeasible.

Trapezoid linear relaxation. If clipping to 𝑠 · (2𝑏 − 1) is possible, we propose another way to

eliminate the boolean variable 𝑏𝑞 , using a trapezoid linear relaxation for overapproximating the

steps operation and the step of 𝑠 · (2𝑏 − 1). Figure 3(d) illustrates our trapezoid linear relaxation.

This linear relaxation is used only if its overapproximation error (denoted by Δ𝑞) is smaller than

a predefined threshold. If the error is too high, we precisely encode the clipping operation as

described before. We define the error Δ𝑞 as the maximal difference between the value of a quantized

step of
ˆ𝜁 and its farthest value in the trapezoid (shown in green line in Figure 3(d)).

Tying the floating-point and quantized networks. The QEF bound is defined over a quantized

network and its floating-point network. While they have different computations, the computations

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 340. Publication date: October 2025.

Quantization with Guaranteed Floating-Point Neural Network Classifications 340:9

15
+

𝜻𝟏,𝟐
𝒒෠𝜻𝟏,𝟐𝒙𝟐

𝒙𝟏

ො𝒛𝟏,𝟐

𝒙𝟏

𝒙𝟐

+

+ +

+

Floating-Point Classifier

+

4-bit Quantized Classifier

0.9

0

0.4

1

-0.63

0

1

0

1

1

0
14

0

6

15

-0.63

0

15

0

15
0.01

0

0.01

𝒙𝟏
𝒒

𝒙𝟐
𝒒

𝒛𝟏,𝟏

𝒛𝟏,𝟐

ො𝒛𝟏,𝟏 𝜻𝟏,𝟏
𝒒෠𝜻𝟏,𝟏𝒐𝟏

𝒐𝟐

𝒐𝟏
𝒒

𝒐𝟐
𝒒

𝒐𝟏 − 𝟎. 𝟏𝟒 ≤ 𝒐𝟏
𝒒

≤ 𝒐𝟏 + 𝟎. 𝟏𝟕

𝒐𝟐 − 𝟎. 𝟎𝟔 ≤ 𝒐𝟐
𝒒

≤ 𝒐𝟐 + 𝟎. 𝟎𝟔

𝒛𝟏,𝟏 − 𝟎. 𝟎𝟕 ≤ 𝜻𝟏,𝟏 = 𝒔 ⋅ 𝜻𝟏,𝟏
𝒒

≤ 𝒛𝟏,𝟏 + 𝟎. 𝟏𝟏

𝑹𝒆𝑳𝑼

𝑹𝒆𝑳𝑼

+
𝑫𝒆𝑸

𝑫𝒆𝑸

+

+

𝑫𝒆𝑸

𝑫𝒆𝑸

+

++

𝒛𝟏,𝟐 − 𝟎. 𝟎𝟔 ≤ 𝜻𝟏,𝟐 = 𝒔 ⋅ 𝜻𝟏,𝟐
𝒒

≤ 𝒛𝟏,𝟐 + 𝟎. 𝟎𝟔

Fig. 4. Differences of neurons in a floating-point network 𝑁 (left) and a quantized network 𝑁𝑞 (right).

are related. Thus, to prune the search space, we compute this relation and add it as linear constraints.

Technically, we bound the differences of respective neurons of the two networks within a real-valued

interval and add it as a constraint. Bounding the differences of respective neurons has been proposed

before, for analyzing the network’s computation over two slightly different inputs [Banerjee et al.

2024; Wang et al. 2022a,b] and for analyzing two similar networks’ computation over the same

inputs [Kabaha and Drachsler-Cohen 2025]. However, our setting requires a new definition of

these differences because of the new quantization operations and the lower bit precision of the

weights and the layers’ inputs. In particular, the difference introduced at each input neuron due to

quantization is bounded within the interval [−𝑠/2, 𝑠/2], the difference due to the clipping operation
is bounded within [min(0, 𝑠 · (2𝑏 −1) −𝑢), 0], and the difference between each quantized weight and

its floating-point counterpart is a real-valued constant. We compute the differences of respective

neurons with two approaches: bound propagation, which is fast but imprecise, and two MILPs,

which are precise but slower. Bound propagation propagates these differences through the entire

network to bound the maximal difference of respective neurons. Our bound propagation is sound

and can only prune the search space and not add overapproximation error or reduce the number

of boolean variables. Our two MILPs are limited by a relatively short timeout. The differences of

respective neurons are obtained by intersecting the bounds of the two approaches. This provides

a natural precision-scalability tradeoff: for some neurons, MILP is fast enough to provide tighter

bounds, while in other cases, MILP is slower and thus the bound propagation provides tighter

bounds. We formally define this computation in Section 5.1.4.

Figure 4 illustrates the bound propagation for a 4-bit quantized network𝑁𝑞 (with 𝑠 = 1/15) and its
floating-point network 𝑁 . Given an input 𝑥 to 𝑁 and its quantized version 𝑥𝑞 to 𝑁𝑞 , the difference

between 𝑥 and 𝑥𝑞 is Δ𝑠 = [−𝑠/2, 𝑠/2] = [−0.033, 0.033]. The difference of a quantized weight and its
counterpart is a constant, for example the distance of the weight 14/15 from 0.9 is Δ𝑤

1,1,1
= 0.033 and

the distance of the weight 6/15 from 0.4 is Δ𝑤
1,1,2

= 0. Bound propagation passes the input differences

through the weights of the first layer. For example, the weighted sum of the top neuron in 𝑁 ’s first

layer is: 𝑧1,1 = 0.9𝑥1 + 0.4𝑥2 − 0.63. We express the weighted sum of the respective neuron in 𝑁𝑞

in terms of 𝑧1,1 plus their difference ˆ𝜁1,1 = (0.9 + Δ𝑤
1,1,1
) (𝑥1 + Δ𝑠) + (0.4 + Δ𝑤

1,1,2
) (𝑥2 + Δ𝑠) − 0.63 =

𝑧1,1 +Δ𝑤
1,1,1
(𝑥1 +Δ𝑠) + 0.9Δ𝑠 + 0.4Δ𝑠 . We obtain a bounding interval on

ˆ𝜁1,1 −𝑧1,1 by substituting the
lower and upper bounds of Δ𝑤

1,1,1
, 𝑥1, and Δ

𝑠
in this expression. We pass this interval in ReLU, in the

quantization (i.e., 𝜁
𝑞

1,1
= clamp

0,2𝑏−1 (⌊𝑅𝑒𝐿𝑈 (ˆ𝜁1,1)/𝑠⌉)), and in the dequantization (i.e., 𝜁1,1 = 𝑠 · 𝜁𝑞
1,1
)

and obtain 𝜁1,1−𝑧1,1 ∈ [−0.07, 0.11] (the computations are defined in Section 5.1.4). Next, we compute

these differences by solving two MILPs, one minimizing 𝜁1,1−𝑧1,1 and the other maximizing it. They

return 𝜁1,1−𝑧1,1 ∈ [−0.07, 0.11]. We intersect these intervals and add the constraints 𝜁1,1 ≥ 𝑧1,1−0.07
and 𝜁1,1 ≤ 𝑧1,1 + 0.11. Similarly, we proceed to the following layers.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 340. Publication date: October 2025.

340:10 Anan Kabaha and Dana Drachsler Cohen

5 CoMPAQt: A System for Guaranteed Classification ConsistentQuantization
In this section, we describe CoMPAQt, our system that provides formally guaranteed classification

consistent quantization. CoMPAQt first computes the QEF bound of a quantized network and then

constructs a correction mechanism to guarantee classification consistency. We begin with the

algorithm for computing the QEF bound and then present the correction mechanisms.

5.1 Algorithm for Computing the QEF Bound
In this section, we describe CoMPAQt’s algorithm for computing the QEF bound, called CoMPAQt-QEF
(Algorithm 1). It takes as input a floating-point network 𝑁 , a quantization scheme (𝑆, 𝑏), and a

class 𝑐 . It returns the QEF bound, which can be leveraged to mitigate classification inconsistencies,

as described in Section 5.2. At high-level, it encodes the constrained optimization defining the QEF
bound as MILP and submits this MILP to a MILP solver. CoMPAQt-QEF begins by computing the

quantized network 𝑁𝑞 (Line 1). Then, it constructs the MILP constraints. It begins with generating

variables 𝑥1, . . . , 𝑥𝑑 for capturing any input in the range [0, 1]𝑑 and storing the range constraints in

𝐼 (Line 2). Then, it adds to 𝑃 a MILP encoding of 𝑁 , the constraints on the input layer 𝑧0,𝑘 = 𝑥𝑘 for all

𝑘 , and the constraints in 𝐼 (Line 3). The encoding of 𝑁 is the MILP introduced by MIPVerify [Tjeng

et al. 2019], described in Section 5.1.1. Then, it initializes the constraints of the quantized network

in P with 𝐼 and the constraints on the input layer 𝜁0,𝑘 = 𝑥𝑘 + [−𝑠0/2, 𝑠0/2] for all 𝑘 (recall that

𝜁0,𝑘 represents the dequantized version of 𝑥𝑘,0’s quantization) (Line 4). Then, it iterates over the

layers and their neurons and encodes their computations. For every neuron, it first encodes the

neuron’s affine transformation into a variable
ˆ𝜁𝑚,𝑘 (Line 7). Then, it computes

ˆ𝜁𝑚,𝑘 ’s lower and

upper bounds 𝑙
𝑞

𝑚,𝑘
and 𝑢

𝑞

𝑚,𝑘
(Line 8), similarly to MIPVerify, as described in Section 5.1.1. Then, it

encodes the computation of 𝜁𝑚,𝑘 which is the dequantization of the quantized ReLU. This encoding

has three possibilities (described in Figure 3). To pick among them, it first computes the maximal

dequantized value 𝑢𝑐𝑚 (Line 9), which depends on 𝑠𝑚 and 𝑏 of the quantization scheme. If 𝑢
𝑞

𝑚,𝑘
is at

most 𝑢𝑐𝑚 , then no value is above 𝑢𝑐𝑚 and so there is no clipping to the value 𝑠𝑚 · (2𝑏 − 1). In this case,

CoMPAQt-QEF overapproximates 𝜁𝑚,𝑘 with the parallelogram relaxation and one boolean variable,

as shown in Figure 3(c) and defined in Equation (2) (Line 10–Line 11). Otherwise, it computes

the overapproximation error of the trapezoid bounding the steps function and the clipping to the

maximum value (Line 13). If the error is too large, it overapproximates with a parallelogram and two

boolean variables, as shown in Figure 3(b) and defined in Equation (3) (Line 14–Line 15). Otherwise,

it overapproximates with a trapezoid and one boolean variable, as shown in Figure 3(d) and defined

in Equation (4) (Line 16–Line 17). After encoding the neuron’s function, CoMPAQt-QEF computes a

relation over the neuron and its respective neuron in 𝑁 (Line 18). After completing encoding 𝑁𝑞 ,

CoMPAQt-QEF collects the constraints for 𝑁 , 𝑁𝑞 , and the QEF bound (described in Section 5.1.3), and

submits to a MILP solver (Line 19). Finally, it returns the QEF bound (Line 20).

5.1.1 MIPVerify. We next describe the MILP encoding of MIPVerify [Tjeng et al. 2019], used

in Line 3 and that we adapt for the quantized network. MIPVerify determines whether a neural

network classifier 𝑁 is locally robust in a neighborhood around an input 𝑥 classified as 𝑐 . It

determines robustness if 𝑁 classifies all inputs in the neighborhood as 𝑐 . The neighborhood is

encoded by intervals bounding the input entries (which CoMPAQt-QEF replaces with constraints

allowing any input in Line 2). The input neurons are associated with real-valued variables 𝑧0,𝑘 for

𝑘 ∈ [𝑑] and they are assigned the input entries: 𝑧0,𝑘 = 𝑥𝑘 . For every layer𝑚 ∈ [𝐿] and neuron

𝑘 ∈ [𝑘𝑚], MIPVerify has two variables: (1) 𝑧𝑚,𝑘 for the pre-activation value storing the weighted

sum and (2) 𝑧𝑚,𝑘 for the activation output. The pre-activation 𝑧𝑚,𝑘 is encoded by a linear equality

constraint capturing the weighted sum and the bias. To define the constraints of 𝑧𝑚,𝑘 , MIPVerify

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 340. Publication date: October 2025.

Quantization with Guaranteed Floating-Point Neural Network Classifications 340:11

Algorithm 1: CoMPAQt-QEF(𝑁 , (𝑆 = {(𝑠𝑚, 𝑠𝑚,𝑊) | 𝑚 ∈ [𝐿]}, 𝑏), 𝑐)
Input: A floating-point network 𝑁 , a quantization scheme (𝑆, 𝑏), and a class 𝑐 .

Output: The QEF bound 𝑑𝑐 .

1 𝑁𝑞 ← quantize(𝑁, (𝑆, 𝑏)) // The quantized classifier

2 𝐼 ← {𝑥𝑘 ≤ 1, 𝑥𝑘 ≥ 0 | 𝑘 ∈ [𝑑]} // The (any) input variables

3 𝑃 ← 𝐼 ∪ {𝑧0,𝑘 = 𝑥𝑘 | 𝑘 ∈ [𝑑]} ∪ MIPVerify_Build(𝑁) // MILP for 𝑁

4 P← 𝐼 ∪ {𝜁0,𝑘 ≤ 𝑥𝑘 + 𝑠0/2, 𝜁0,𝑘 ≥ 𝑥𝑘 − 𝑠0/2 | 𝑘 ∈ [𝑑]} // MILP for 𝑁𝑞’s input layer

5 foreach𝑚 ∈ [𝐿] do // Iterate over 𝑁𝑞’s layers
6 foreach 𝑘 ∈ [𝑚𝑘] do // Iterate over the neurons in the layer

7 P = P ∪ { ˆ𝜁𝑚,𝑘 = 𝑏𝑚,𝑘 + 𝑠𝑚,𝑊 ·
∑𝑘𝑚−1
𝑘 ′=1 𝑤

𝑞
𝑚,𝑘,𝑘 ′ · 𝜁𝑚−1,𝑘 ′ }

8 𝑢
𝑞

𝑚,𝑘
, 𝑙
𝑞

𝑚,𝑘
← compute_bounds(P, ˆ𝜁𝑚,𝑘) // Compute neuron’s bounds

9 𝑢𝑐𝑚 ← 𝑠𝑚 · (2𝑏 − 1) // The maximal dequantized value

10 if 𝑢𝑞
𝑚,𝑘
≤ 𝑢𝑐𝑚 then

11 P← P ∪ ParallelogramRelaxation(P, (𝑆, 𝑏),𝑚, 𝑘, 𝑙𝑞
𝑚,𝑘
, 𝑢
𝑞

𝑚,𝑘
)

12 else
13 Δ𝑞 ← 𝑢𝑐𝑚 −

𝑢𝑐𝑚

𝑢
𝑞

𝑚,𝑘
−𝑠𝑚/2

· (𝑢𝑐𝑚 − 𝑠𝑚/2) // Overapproximation error

14 if Δ𝑞 ≥ 𝑇trapezoid then // Error is too large
15 P← P ∪ ClippedParallelogram(P, (𝑆, 𝑏),𝑚, 𝑘, 𝑙𝑞

𝑚,𝑘
, 𝑢
𝑞

𝑚,𝑘
)

16 else
17 P← P ∪ TrapezoidRelaxation(P, (𝑆, 𝑏),𝑚, 𝑘, 𝑙𝑞

𝑚,𝑘
, 𝑢
𝑞

𝑚,𝑘
)

18 P← P ∪ compute_relation(𝑁, (𝑆, 𝑏), 𝑁𝑞, 𝑃,P,𝑚, 𝑘)

19 𝑑𝑐 ← MILP_solver(𝑃 ∪ P ∪ encode_QEF(𝑃,P))
20 return 𝑑𝑐

computes lower and upper bounds, 𝑙𝑚,𝑘 , 𝑢𝑚,𝑘 ∈ R, for 𝑧𝑚,𝑘 . This is done by interval arithmetic

or two MILPs. The MILPs consist of all constraints up to layer𝑚 − 1, the equality constraint of

𝑧𝑚,𝑘 and the objectives 𝑙𝑚,𝑘 = min 𝑧𝑚,𝑘 and 𝑢𝑚,𝑘 = max 𝑧𝑚,𝑘 (one objective for each MILP). After

computing these bounds, MIPVerify determines the constraints for 𝑧𝑚,𝑘 as follows. If 𝑙𝑚,𝑘 ≥ 0, i.e.,

𝑧𝑚,𝑘 is always active in this neighborhood, it adds 𝑧𝑚,𝑘 = 𝑧𝑚,𝑘 . If 𝑢𝑚,𝑘 ≤ 0, i.e., 𝑧𝑚,𝑘 is inactive, it

adds 𝑧𝑚,𝑘 = 0. Otherwise, it introduces a boolean variable 𝑎𝑚,𝑘 ∈ {0, 1} and four constraints, such

that if a satisfying assignment for these constraints assigns 𝑎𝑚,𝑘 = 1, then 𝑧𝑚,𝑘 is in its active state

and otherwise 𝑧𝑚,𝑘 is in its inactive state. The four constraints are:

𝑧𝑚,𝑘 ≥ 0, 𝑧𝑚,𝑘 ≤ 𝑢𝑚,𝑘 · 𝑎𝑚,𝑘 , 𝑧𝑚,𝑘 ≥ 𝑧𝑚,𝑘 , 𝑧𝑚,𝑘 ≤ 𝑧𝑚,𝑘 − 𝑙𝑚,𝑘 (1 − 𝑎𝑚,𝑘)

The first two constraints enforce the output 0 for the inactive case and the other two constraints en-

force the output 𝑧𝑚,𝑘 for the active case. To check whether𝑁 classifies all inputs in the neighborhood

as 𝑐 , MIPVerify adds a constraint that the score of 𝑐 is not the maximal score: 𝑧𝐿,𝑐 −max𝑐′≠𝑐 𝑧𝐿,𝑐′ ≤ 0,

where max is encoded by the Big-M method [Vanderbei 1996], defining a boolean variable for each

𝑐′ ≠ 𝑐 . 𝑁 is locally robust at the neighborhood if and only if this MILP is infeasible.

5.1.2 Our MILP for quantized networks. In this section, we introduce our MILP encoding for a

quantized network, defined by a network 𝑁 and a scheme ({(𝑠𝑚, 𝑠𝑚,𝑊) | 𝑚 ∈ [𝐿]}, 𝑏). Encoding the
quantized network’s parameters is straightforward: the biases 𝑏𝑚,𝑘 of every𝑚 ∈ [𝐿], 𝑘 ∈ [𝑘𝑚] are

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 340. Publication date: October 2025.

340:12 Anan Kabaha and Dana Drachsler Cohen

identical to the floating-point network’s biases and the quantized weights𝑤
𝑞

𝑚,𝑘,𝑘 ′ of every𝑚 ∈ [𝐿],
𝑘 ∈ [𝑘𝑚], and 𝑘 ′ ∈ [𝑘𝑚−1] are in lower precision compared to𝑤𝑚,𝑘,𝑘 ′ but are still constants. Our

encoding has similar real variables as 𝑁 for the pre-activation part
ˆ𝜁𝑚,𝑘 and for the activation part

𝜁𝑚,𝑘 (corresponding to 𝑧𝑚,𝑘 and 𝑧𝑚,𝑘). The pre-activation output is encoded similarly to 𝑁 except

that it includes a dequantization of the weights:
ˆ𝜁𝑚,𝑘 = 𝑏𝑚,𝑘 + 𝑠𝑚,𝑊 ·

∑𝑘𝑚−1
𝑘 ′=1 𝑤

𝑞
𝑚,𝑘,𝑘 ′ · 𝜁𝑚−1,𝑘 ′ . The

challenge is encoding 𝜁𝑚,𝑘 = 𝑠𝑚 · clamp0,2𝑏−1 (⌊𝑅𝑒𝐿𝑈 (ˆ𝜁𝑚,𝑘)/𝑠𝑚⌉). As discussed in Section 4 and

illustrated in Figure 3, there are three possible encodings:

1) 𝑢𝑞
𝑚,𝑘
≤ 𝑢𝑐𝑚 : If ˆ𝜁𝑚,𝑘 cannot exceed the maximal dequantized value, CoMPAQt-QEF adds a boolean

variable 𝑎
𝑞

𝑚,𝑘
for capturing the active and inactive cases, two constraints for enforcing 0 in the

inactive case (when 𝑎
𝑞

𝑚,𝑘
= 0), and constraints for overapproximating the active case (when 𝑎

𝑞

𝑚,𝑘
= 1)

by its bounding parallelogram:

𝜁𝑚,𝑘 ≥ 0, 𝜁𝑚,𝑘 ≤ 𝑢𝑞𝑚,𝑘 · 𝑎
𝑞

𝑚,𝑘 (2a)

𝜁𝑚,𝑘 ≥ 𝑙𝑞𝑚,𝑘 , 𝜁𝑚,𝑘 ≥ ˆ𝜁𝑚,𝑘 − 𝑠𝑚/2, 𝜁𝑚,𝑘 ≤ ˆ𝜁𝑚,𝑘 + 𝑠𝑚/2 − 𝑙𝑞𝑚,𝑘 · (1 − 𝑎
𝑞

𝑚,𝑘
) (2b)

Lemma 5.1. If 𝑢𝑞
𝑚,𝑘
≤ 𝑢𝑐𝑚 , Equation (2) overapproximates the dequantization of the quantized ReLU.

Proof. We split to cases by the boolean variable’s assignment:

• 𝑎𝑞
𝑚,𝑘

= 0: By Equation (2a), 𝜁𝑚,𝑘 = 0. The other constraints hold.

• 𝑎𝑞
𝑚,𝑘

= 1: Since 𝑢
𝑞

𝑚,𝑘
≤ 𝑢𝑐𝑚 , there is no clipping to 𝑢𝑐𝑚 . Thus, 𝜁𝑚,𝑘 is

ˆ𝜁𝑚,𝑘 plus a rounding

error [−𝑠𝑚/2, 𝑠𝑚/2]. This computation is bounded by the parallelogram: 𝜁𝑚,𝑘 ≥ max(0, 𝑙𝑞
𝑚,𝑘
),

𝜁𝑚,𝑘 ≤ 𝑢𝑞𝑚,𝑘 , 𝜁𝑚,𝑘 ≥ ˆ𝜁𝑚,𝑘 − 𝑠𝑚/2, and 𝜁𝑚,𝑘 ≤ ˆ𝜁𝑚,𝑘 + 𝑠𝑚/2, which hold when 𝑎
𝑞

𝑚,𝑘
= 1.

□

2) 𝑢𝑞
𝑚,𝑘

> 𝑢𝑐𝑚 : If the quantized ReLU may be clipped to 𝑢𝑐𝑚 = 𝑠𝑚 · (2𝑏 − 1), CoMPAQt-QEF adds

another boolean variable 𝑏
𝑞

𝑚,𝑘
. If 𝑏

𝑞

𝑚,𝑘
= 0, the ReLU output is determined by 𝑎

𝑞

𝑚,𝑘
: it is 0 if 𝑎

𝑞

𝑚,𝑘
= 0

and is bounded by the parallelogram if 𝑎
𝑞

𝑚,𝑘
= 1. If 𝑏

𝑞

𝑚,𝑘
= 1, the output is 𝑢𝑐𝑚 . Our encoding is:

𝑎
𝑞

𝑚,𝑘
≥ 𝑏𝑞

𝑚,𝑘
, 𝜁𝑚,𝑛 ≥ 0, 𝜁𝑚,𝑘 ≤ 𝑢𝑞𝑚,𝑘 · 𝑎

𝑞

𝑚,𝑘
, (3a)

𝜁𝑚,𝑘 ≥ ˆ𝜁𝑚,𝑘 − 𝑠𝑚/2 − (𝑢𝑞𝑚,𝑘 − 𝑢
𝑐
𝑚) · 𝑏

𝑞

𝑚,𝑘
, 𝜁𝑚,𝑘 ≤ ˆ𝜁𝑚,𝑘 + 𝑠𝑚/2 − 𝑙𝑞𝑚,𝑘 · (1 − 𝑎

𝑞

𝑚,𝑘
), (3b)

𝜁𝑚,𝑘 ≥ 𝑙𝑞𝑚,𝑘 , 𝜁𝑚,𝑘 ≥ 𝑢𝑐𝑚 · 𝑏
𝑞

𝑚,𝑘
, 𝜁𝑚,𝑘 ≤ 𝑢𝑐𝑚 (3c)

Lemma 5.2. The above constraints overapproximate the dequantization of the quantized ReLU.

Proof. We split to cases by the boolean variables’ assignments:

• 𝑎𝑞
𝑚,𝑘

= 0: By Equation (3a), 𝑏
𝑞

𝑚,𝑘
= 0 and 𝜁𝑚,𝑘 = 0. The other constraints hold.

• 𝑎𝑞
𝑚,𝑘

= 1 and 𝑏
𝑞

𝑚,𝑘
= 0: 𝜁𝑚,𝑘 is bounded by the parallelogram whose correctness is proven

in Lemma 5.1. The other constraints hold.

• 𝑎𝑞
𝑚,𝑘

= 1 and 𝑏
𝑞

𝑚,𝑘
= 1: By Equation (3c), 𝜁𝑚,𝑘 = 𝑢𝑐𝑚 . The other constraints hold.

□

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 340. Publication date: October 2025.

Quantization with Guaranteed Floating-Point Neural Network Classifications 340:13

3) Trapezoid relaxation. To reduce the added complexity of the boolean 𝑏
𝑞

𝑚,𝑘
, we propose to bound

the active state within a trapezoid, if the maximum difference between the clipped dequantized

value and its corresponding overapproximated value is below a predefined threshold. This encoding

is:

𝜁𝑚,𝑘 ≥ 0, 𝜁𝑚,𝑘 ≤ 𝑢𝑐𝑚 · 𝑎
𝑞

𝑚,𝑘
, (4a)

𝜁𝑚,𝑘 ≥
𝑢𝑐𝑚

𝑢
𝑞

𝑚,𝑘
− 𝑠𝑚/2

· (ˆ𝜁𝑚,𝑘 − 𝑠𝑚/2), 𝜁𝑚,𝑘 ≤ ˆ𝜁𝑚,𝑘 + 𝑠𝑚/2 − 𝑙𝑞𝑚,𝑘 (1 − 𝑎
𝑞

𝑚,𝑘
) (4b)

Lemma 5.3. The above constraints overapproximate the dequantization of the quantized ReLU.

Proof. We split to cases by the boolean variable’s assignment:

• 𝑎𝑞
𝑚,𝑘

= 0: By Equation (4a), 𝜁𝑚,𝑘 = 0. The other constraints hold.

• 𝑎𝑞
𝑚,𝑘

= 1: By 𝜁𝑚,𝑘 ≤ 𝑢𝑐𝑚 , 𝜁𝑚,𝑘 is at most the maximal dequantized value. By 𝜁𝑚,𝑘 ≥ 0, 𝜁𝑚,𝑘 is at

least the minimal dequantized value. By 𝜁𝑚,𝑘 ≤ ˆ𝜁𝑚,𝑘 + 𝑠𝑚/2, 𝜁𝑚,𝑘 is below the steps function

plus the maximal rounding error. By 𝜁𝑚,𝑘 ≥ 𝑢𝑐𝑚

𝑢
𝑞

𝑚,𝑘
−𝑠𝑚/2

· (ˆ𝜁𝑚,𝑘 − 𝑠𝑚/2), 𝜁𝑚,𝑘 is above the steps
function minus the maximal rounding error.

□

5.1.3 QEF bound as MILP. We next present our MILP encoding for the QEF bound. This bound is

defined over any input 𝑥 within the range [0, 1]𝑑 . The input layer of 𝑁 is defined as 𝑧0,𝑘 = 𝑥𝑘 , for

all 𝑘 ∈ [𝑑]. The dequantization of the quantized input layer of 𝑁𝑞 is bounded by: 𝜁0,𝑘 ≤ 𝑥𝑘 + 𝑠0/2
and 𝜁0,𝑘 ≥ 𝑥𝑘 − 𝑠0/2, for all 𝑘 ∈ [𝑑]. The network 𝑁 is encoded as described in Section 5.1.1 and the

quantized network 𝑁𝑞 is encoded as described in Section 5.1.2, based on the choices described in

Lines 10–17. The QEF bound’s conditions are encoded as follows. The term C𝑐
𝑁
(𝑥) ≤ 0 is encoded

by 𝑧𝐿,𝑐 −max𝑐′≠𝑐 𝑧𝐿,𝑐′ ≤ 0, where max is expressed by the Big-M method [Vanderbei 1996], which

introduces a large constant𝑀 and boolean variables 𝑎𝑐′ for every 𝑐
′ ≠ 𝑐 . For the term C𝑐

𝑁𝑞
(𝑥) ≥ 𝑑𝑐 ,

we introduce an optimization variable 𝑑𝑐 and add constraints ensuring that 𝑁𝑞 classifies 𝑥 as

the given class 𝑐 with confidence of at least 𝑑𝑐 , namely: 𝜁𝐿,𝑐 − 𝜁𝐿,𝑐′ ≥ 𝑑𝑐 , ∀𝑐′ ≠ 𝑐 . Additionally,
CoMPAQt-QEF adds relations 𝜙𝑟𝑒𝑙𝑠 between respective neurons (Section 5.1.4). The objective function

is the maximization of the QEF bound 𝑑𝑐 . Overall, the complete MILP encoding is:

max𝑑𝑐 subject to (5a)

𝜙𝑟𝑒𝑙𝑠 ; 𝑥 ∈ [0, 1]𝑑 ; ∀𝑘. 𝑧0,𝑘 = 𝑥𝑘 ; ∀𝑘. 𝜁0,𝑘 ≤ 𝑥𝑘 + 𝑠0/2; ∀𝑘. 𝜁0,𝑘 ≥ 𝑥𝑘 − 𝑠0/2 (5b)

∀𝑐′ ≠ 𝑐. 𝜁𝐿,𝑐 − 𝜁𝐿,𝑐′ ≥ 𝑑𝑐 ; ∀𝑐′ ≠ 𝑐. 𝑧𝐿,𝑐 − 𝑧𝐿,𝑐′ ≤ 𝑀 · (1 − 𝛼𝑐′);
∑︁
𝑐′≠𝑐

𝛼𝑐′ ≥ 1 (5c)

∀𝑚 > 0,∀𝑘. 𝑧𝑚,𝑘 = 𝑏𝑚,𝑘 +
𝑘𝑚−1∑︁
𝑘 ′=1

𝑤𝑚,𝑘,𝑘 ′ · 𝑧𝑚−1,𝑘 ′ (5d)

∀𝑚 > 0,∀𝑘. 𝑧𝑚,𝑘 ≥ 0; 𝑧𝑚,𝑘 ≥ 𝑧𝑚,𝑘 ; 𝑧𝑚,𝑘 ≤ 𝑢𝑚,𝑘 · 𝑎𝑚,𝑘 ; 𝑧𝑚,𝑘 ≤ 𝑧𝑚,𝑘 − 𝑙𝑚,𝑘 (1 − 𝑎𝑚,𝑘) (5e)

∀𝑚 > 0,∀𝑘. ˆ𝜁𝑚,𝑘 = 𝑏𝑚,𝑘 + 𝑠𝑚,𝑊
𝑘𝑚−1∑︁
𝑘 ′=1

𝑤𝑞𝑚,𝑘,𝑘 ′ · 𝜁𝑚−1,𝑘 ′ +constraints for 𝜁𝑚,𝑘 (Section 5.1.2) (5f)

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 340. Publication date: October 2025.

340:14 Anan Kabaha and Dana Drachsler Cohen

5.1.4 Relational constraints. Lastly, we describe compute_relation, which returns relational

constraints over the outputs of respective neurons (Line 18). It computes an interval bounding the

neurons’ difference 𝜁𝑚,𝑘 − 𝑧𝑚,𝑘 ∈ [Δ𝑚,𝑘 ,Δ𝑚,𝑘] and then creates the constraints 𝜁𝑚,𝑘 ≥ 𝑧𝑚,𝑘 + Δ𝑚,𝑘
and 𝜁𝑚,𝑘 ≤ 𝑧𝑚,𝑘 + Δ𝑚,𝑘 . To derive these relations, it runs two computations: bound propagation,

which is efficient but imprecise, and MILP optimization, which is slower but more precise. The

running time of the MILP optimization is limited by a timeout 𝑇bound. We denote the interval that

the bound propagation returns by [Δ𝑃𝑚,𝑘 ,Δ𝑃𝑚,𝑘] and the interval that the MILP optimization

returns by [Δ𝑀𝑚,𝑘 ,Δ𝑀𝑚,𝑘]. Accordingly, compute_relation sets Δ𝑚,𝑘 =max(Δ𝑀𝑚,𝑘 ,Δ𝑃𝑚,𝑘) and
Δ𝑚,𝑘 =min(Δ𝑀𝑚,𝑘 ,Δ𝑃𝑚,𝑘). This approach allows it to balance precision and efficiency.

Bound propagation. Bound propagation bounds the difference of 𝜁𝑚,𝑘 − 𝑧𝑚,𝑘 with interval arith-

metic. The differences stem from the quantization of the inputs to 𝜁𝑚,𝑘 and their weights. For

every 𝜁𝑚,𝑘 , the difference with its floating-point ReLU value is bounded by the rounding error

and the clipping to the maximal dequantized value 𝑢𝑐𝑚 : 𝑄
𝑧
𝑚,𝑘

=

[
−max

(
𝑠𝑚
2
, 𝑢
𝑞

𝑚,𝑘
− 𝑢𝑐𝑚

)
,
𝑠𝑚
2

]
. The

difference of respective weights is 𝑄𝑤𝑚,𝑘,𝑘′ = 𝑠𝑚,𝑊 · 𝑤𝑞𝑚,𝑘,𝑘 ′ − 𝑤𝑚,𝑘,𝑘 ′ . We define the difference

interval 𝐼𝑃
𝑚,𝑘

= [Δ𝑃𝑚,𝑘 ,Δ𝑃𝑚,𝑘] inductively on the layer𝑚. For𝑚 = 0 and 𝑘 ∈ [𝑑], 𝐼𝑃
0,𝑘

= [0, 0] and
𝑄𝑧
0,𝑘

=
[
− 𝑠0

2
,
𝑠0
2

]
(since there is no clipping at the input layer). For every𝑚 > 0, 𝑘 ∈ [𝑚𝑘]:

𝐼𝑃𝑧𝑚,𝑘
= 𝑏𝑚,𝑘 +

𝑘𝑚−1∑︁
𝑘 ′=1

𝑠𝑚,𝑊 ·𝑤𝑞𝑚,𝑘,𝑘 ′ · 𝜁𝑚−1,𝑘 ′ − 𝑧𝑚,𝑘 =

𝑏𝑚,𝑘 +
𝑘𝑚−1∑︁
𝑘 ′=1

(𝑄𝑤𝑚,𝑘,𝑘′ +𝑤𝑚,𝑘,𝑘 ′) · (𝑄
𝑧
𝑚−1,𝑘 + 𝐼

𝑃
𝑧𝑚−1,𝑘′

+ 𝑧𝑚−1,𝑘 ′) − 𝑧𝑚,𝑘 =

𝑘𝑚−1∑︁
𝑘 ′=1

(𝑄𝑤𝑚,𝑘,𝑘′ +𝑤𝑚,𝑘,𝑘 ′) · (𝑄
𝑧
𝑚−1,𝑘 + 𝐼

𝑃
𝑧𝑚−1,𝑘′

) +𝑄𝑤𝑚,𝑘,𝑘′ · 𝑧𝑚−1,𝑘 ′

In the above equation, intervals consisting of one value [𝑧, 𝑧] are abbreviated to 𝑧. This expression

is bounded by the real-valued lower and upper bounds of 𝑧𝑚−1,𝑘 ′ . For the interval of 𝐼
𝑃
𝑧𝑚,𝑘

, bounding

the differences of ReLUs, we follow the definition of Kabaha and Drachsler-Cohen [2025]: 𝐼𝑃𝑧𝑚,𝑘
=

[−max(0,−𝐼𝑧𝑚,𝑘
),max(0, 𝐼𝑧𝑚,𝑘

)] (the quantization error is not added, since it is included in 𝐼𝑃
𝑧𝑚,𝑘

).

MILP optimization. Our second approach for computing the bounds relies on MILP optimization.

It bounds 𝜁𝑚,𝑘 − 𝑧𝑚,𝑘 in the interval defined by: Δ𝑀𝑚,𝑘 = min𝑃 [𝑚] ,P[𝑚] (𝜁𝑚,𝑘 − 𝑧𝑚,𝑘) and Δ𝑀𝑚,𝑘 =

max𝑃 [𝑚] ,P[𝑚] (𝜁𝑚,𝑘 − 𝑧𝑚,𝑘). Both MILPs consist of all constraints in 𝑃 and P up to layer𝑚. They are

submitted to a MILP solver with a timeout 𝑇bound. CoMPAQt-QEF relies on an anytime solver, which

returns sound bounds: tight or suboptimal (if it reaches the timeout).

5.2 Correction Mechanisms to Mitigate Classification Inconsistencies
In this section, we describe two correction mechanisms to mitigate classification inconsistencies

using our QEF bounds. The first mechanism, called adaptive precision refinement (APR), guarantees
consistency with the floating-point network but may require higher bit precision. The second

mechanism, called QEF-Ensemble, relies only on low-bit precision networks. It may not eliminate

all classification inconsistencies, but it notifies the user when this occurs.

Adaptive precision refinement. The adaptive precision refinement (APR) correction mechanism

takes as input a floating-point network 𝑁 , quantization scale factors 𝑆 = {(𝑠𝑚, 𝑠𝑚,𝑊) | 𝑚 ∈ [𝐿]},

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 340. Publication date: October 2025.

Quantization with Guaranteed Floating-Point Neural Network Classifications 340:15

Algorithm 2: The Adaptive Precision Refinement Correction Mechanism

1 Function APR-Init(𝑁 , 𝑆 , 𝑏1, 𝑏2, . . . , 𝑏𝐾)
Input: A floating-point network 𝑁 , quantization scale factors 𝑆 and 𝐾 precision levels.

2 foreach 𝑖 ∈ [𝐾] do
3 𝑁

𝑏𝑖
𝑞 ← quantize(𝑁, (𝑆, 𝑏𝑖))

4 foreach 𝑐 ∈ 𝐶 do
5 𝑑 [𝑖] [𝑐] ← CoMPAQt-QEF(𝑁, (𝑆, 𝑏𝑖), 𝑐)

6 Function APR-Inference(𝑥)
Input: An input 𝑥 .

Output: A classification consistent with 𝑁 minimizing the computational cost.

7 𝑖 ← 1

8 while 𝑖 ≤ 𝐾 do
9 𝑧𝐿 ← 𝑁

𝑏𝑖
𝑞 (𝑥) // Pass through the quantized network

10 𝑐 ← argmax 𝑧𝐿 // Predicted class

11 if 𝑧𝐿,𝑐 −max𝑐′≠𝑐 𝑧𝐿,𝑐′ > 𝑑 [𝑖] [𝑐] then return 𝑐 // QEF bound is met

12 foreach 𝑗 ∈ {𝑖 + 1, . . . , 𝐾} do
13 if 𝑧𝐿,𝑐 −max𝑐′≠𝑐 𝑧𝐿,𝑐′ > 𝑑 [𝑗] [𝑐] then 𝑖 ← 𝑗 ; break // QEF bound may be met

14 else if 𝑗 == 𝐾 then 𝑖 ← 𝐾 + 1 // No QEF bound is expected to be met

15 return argmax𝑁 (𝑥) // Fallback to the floating-point network

and an increasing series of 𝐾 precision levels 𝑏1 < 𝑏2 < · · · < 𝑏𝐾 (e.g., 8-bit, 16-bit, 32-bit). It

computes the QEF bounds of every class and every quantization scheme. At inference, upon any

input 𝑥 , it passes 𝑥 through the lowest precision network 𝑁
𝑏1
𝑞 . If the classification confidence is

above the corresponding QEF bound, it returns the predicted class. Otherwise, it refines the precision
to the minimal 𝑏𝑖 whose corresponding QEF bound is below the current classification confidence.

Then, it passes 𝑥 through 𝑁
𝑏𝑖
𝑞 . If the classification confidence is above the corresponding QEF bound,

it returns the predicted class. Otherwise, it refines the precision and continues similarly. If all

confidences are below their QEF bounds, APR runs 𝑥 through 𝑁 and returns the predicted class.

This operation guarantees that the returned class is exactly the class that 𝑁 assigns to 𝑥 even if 𝑥 is

not passed through 𝑁 . Algorithm 2 shows the algorithm of APR. Its initialization takes as input a

floating-point network, a set of quantization scale factors, and 𝐾 precision levels. For each precision

level, it constructs the quantized network, computes the QEF bound of every class, and stores them

(Lines 1-5). Its inference takes an input 𝑥 to the network. APR then iterates the quantized networks,

in increasing precision level (Line 8). For each quantized network, it passes 𝑥 through the network

(Line 9) and identifies its predicted class 𝑐 (Line 10). Then, it checks if the classification confidence

of 𝑐 is greater than its corresponding QEF bound (Line 11). If yes, it is guaranteed that 𝑁 classifies 𝑥

as 𝑐 . Thus, 𝑐 is returned. Otherwise, APR heuristically selects the next quantized network as the one

whose QEF bound for 𝑐 is lower than the current classification confidence (Lines 12–14). If none of

the quantized networks is guaranteed to be classification consistent with 𝑁 for 𝑥 , APR falls back
to the floating-point network, passes 𝑥 through 𝑁 , and returns its predicted class (Line 15). For

example, consider three precision levels: INT8, INT12, and INT16, whose QEF bounds for 𝑐 are:

𝑑 [INT8] [𝑐] = 10, 𝑑 [INT12] [𝑐] = 5, and 𝑑 [INT16] [𝑐] = 1. Given an input 𝑥0, APR passes it in the

INT8 network which classifies it as 𝑐 . Assume its classification confidence is 𝑧𝐿,𝑐 −max𝑐′≠𝑐 𝑧𝐿,𝑐′ = 2,

which is lower than the QEF bound making it insufficient to guarantee consistency for the INT8

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 340. Publication date: October 2025.

340:16 Anan Kabaha and Dana Drachsler Cohen

Algorithm 3: Ensemble for Consistent Quantization

1 Function QEF-Ensemble-Init(𝑁 , T, N, D, (𝑆, 𝑏), 𝐾)
Input: A floating-point network 𝑁 , a training algorithm T, a network architecture N, a

dataset D, a quantization scheme (𝑆, 𝑏) and the ensemble size 𝐾 .

2 foreach 𝑖 ∈ [𝐾] do
3 if 𝑖 = 1 then 𝑁 1 ← 𝑁

4 else 𝑁 𝑖 ← T(N,D, random_seed)
5 𝑁 𝑖

𝑏
← quantize(𝑁 𝑖 , (𝑆, 𝑏))

6 foreach 𝑐 ∈ 𝐶 do
7 𝑑 [𝑖] [𝑐] ← CoMPAQt-QEF(𝑁 𝑖 , (𝑆, 𝑏), 𝑐)

8 Function QEF-Ensemble-Inference(𝑥)
Input: An input 𝑥 .

Output: A predicted class and a flag indicating if it is classification consistent.

9 foreach 𝑖 ∈ [𝐾] do
10 𝑧𝐿 ← 𝑁 𝑖

𝑏
(𝑥) // Pass through the quantized network

11 𝑐 ← argmax 𝑧𝐿 // Predicted class

12 if 𝑧𝐿,𝑐 −max𝑐′≠𝑐 𝑧𝐿,𝑐′ > 𝑑 [𝑖] [𝑐] then return (𝑐 , True) // QEF bound is met

13 return (argmax𝑁 1

𝑏
(𝑥), False) // Fallback to the original network

network. Since the INT12 network’s bound is 5, APR does not pass 𝑥0 through it. Since the INT16

network’s bound is 1, APR passes 𝑥0 through it. If the classification confidence is over 1, APR returns
𝑐 , guaranteeing consistency with the floating-point network (i.e., the classification is unaffected

by quantization). Otherwise, APR passes 𝑥0 through the floating-point network and returns its

predicted class, thereby APR trivially ensures a consistent classification.

By the operation of APR and the correctness of CoMPAQt-QEF, we get the following theorem:

Theorem 5.4. For every 𝑥 ∈ [0, 1]𝑑 , APR returns the class 𝑐 that 𝑁 assigns to 𝑥 while aiming to
lower the computational cost.

Ensemble of quantized networks. The ensemble of quantized network correction mechanism

(QEF-Ensemble) leverages a network ensemble to mitigate classification inconsistencies while

using only low-bit quantized networks. A network ensemble consists of a set of networks trained

for the same task. Network ensembles are popular in many tasks, including adversarial robustness,

where the ensemble aims at improving resilience against adversarial attacks [Pang et al. 2019;

Strauss et al. 2017]. Its idea is to leverage the training variations to reduce the likelihood that an

adversarial perturbation misleads all networks in the ensemble. Similarly, our idea is to rely on

an ensemble to reduce the likelihood that an input is below the QEF bound of all networks in the

ensemble. That is, the ensemble increases the robustness to classification inconsistency, with respect

to some network in the ensemble. Our ensemble of quantized networks is generated by training

floating-point networks with the original training algorithm, to preserve the intended properties of

the original network (e.g., adversarial training [Balunovic and Vechev 2020; Madry et al. 2018] or

QAT [Dong et al. 2019; Jacob et al. 2018]). Algorithm 3 presents the algorithm of QEF-Ensemble. It
is initialized with a floating-point network 𝑁 , training algorithm T, network architectureN, dataset

D, quantization scheme (𝑆, 𝑏), and ensemble size 𝐾 . It constructs an ensemble by training 𝐾 − 1
additional networks (Line 4), using the same training algorithm but with different random seeds.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 340. Publication date: October 2025.

Quantization with Guaranteed Floating-Point Neural Network Classifications 340:17

It creates the quantized versions of all networks (Line 5) and computes their corresponding QEF
bounds for all classes (Line 7). Its inference takes an input 𝑥 and iterates over the quantized networks,

starting with the one corresponding to the original network 𝑁 (Line 9). For each quantized network

𝑁 𝑖
𝑏
, it passes 𝑥 through the network (Line 10) and obtains the predicted class 𝑐 (Line 11). Then, it

checks if the classification confidence of 𝑐 is greater than its corresponding QEF bound (Line 12). If

so, it is guaranteed that 𝑁 𝑖 classifies 𝑥 as 𝑐 . Thus, 𝑐 is returned along with a flag True indicating that
𝑥 is classification consistent. Otherwise, QEF-Ensemble continues to the next quantized network.

If none of the quantized networks meets its QEF bound, QEF-Ensemble falls back to the predicted

class of the original network’s quantized network along with a flag False, indicating that 𝑁 may

not necessarily classify 𝑥 as 𝑐 (Line 13). For example, assume a network 𝑁 1 = 𝑁 , trained to be

adversarially robust, and two additional networks 𝑁 2
and 𝑁 3

, trained by the same algorithm to

be adversarially robust. Given 𝑏 = 8, we denote their quantized networks as 𝑁 1

INT8
, 𝑁 2

INT8
, and

𝑁 3

INT8
. Assume their QEF bounds are 𝑑 [1] [𝑐] = 2, 𝑑 [2] [𝑐] = 3, and 𝑑 [3] [𝑐] = 1.5. Given an input 𝑥0,

QEF-Ensemble passes it through 𝑁 1

INT8
, which classifies it as 𝑐 . Assume the classification confidence

is 𝑧𝐿,𝑐 −max𝑐′≠𝑐 𝑧𝐿,𝑐′ = 0.5. Since this value is below the bound 𝑑 [1] [𝑐], the classification 𝑐 is not
guaranteed to be consistent, as it lies close to the decision boundary of this classifier and may

be changed by quantization. QEF-Ensemble thus passes 𝑥0 through 𝑁
2

INT8
. Assume the confidence

is 3.5, which is over the bound 𝑑 [2] [𝑐] = 3. Therefore, the classification is far from the decision

boundary and is not affected by quantization errors. It is thus guaranteed to be consistent with the

floating-point network 𝑁 2
, and QEF-Ensemble returns 𝑐 with a consistency guarantee.

By QEF-Ensemble’s operation, we get the following theorem:

Theorem 5.5. The classification inconsistencies of QEF-Ensemble are contained in that of 𝑁 .

6 Evaluation
In this section, we evaluate the performance of CoMPAQt in computing the QEF bound and cor-

recting the classification inconsistencies caused by the quantization. We begin by describing our

experimental setup, including implementation details, the networks, and the datasets. We then de-

scribe the baselines and the experiments. Our experiments show the effectiveness of our correction

mechanisms compared to the baselines as well as their robustness to out-of-distribution variations.

We also present a use case over the airplane collision avoidance system using the ACAS-Xu system.

We finally provide an ablation study showing the importance of CoMPAQt’s components.

Implementation. We implemented CoMPAQt in Julia 1.8.3 as a module extending MIPVerify [Tjeng

et al. 2019]. Our implementation solves MILPs with Gurobi 12.0 [Gurobi Optimization, LLC 2024],

whose computations are parallelized over 32 cores. The timeout to solve themainMILP (Equation (5))

is 1.5 hours and the timeout to solve theMILPs for computing the bounds (Section 5.1.4) is𝑇bound = 10

seconds. The threshold for the trapezoid relaxation’s overapproximation error is𝑇trapezoid = 0.1. We

ran our experiments on an Ubuntu 20.04.1 OS, using a dual AMD EPYC 7713 64-Core Processor.

Datasets and networks. We evaluate CoMPAQt on two tabular datasets and an image dataset:

• Adult Census [Becker and Kohavi 1996] (Adult): This dataset is used for predicting whether

an individual’s annual income exceeds $50,000. Its inputs have 14 features (e.g., age and

occupation) and they are labeled with yes if their income is over $50,000 and no otherwise.

• Default of Credit Card Clients [Yeh 2016] (Credit): This dataset is used for predicting whether

a client will default on payment. Its inputs have 23 features (e.g., bill amounts and age) and

they are labeled with yes if they default or no otherwise.

• MNIST [LeCun and et al. 1989]: This dataset consists of grayscale images of handwritten

digits. Its images consist of 28 × 28 pixels and they are labeled with the digit they contain.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 340. Publication date: October 2025.

340:18 Anan Kabaha and Dana Drachsler Cohen

We evaluate CoMPAQt on fully connected classifiers with two hidden layers and on a convolutional
classifier with two convolutional layers followed by a fully connected layer. While the networks

may seem small, we remind that CoMPAQt analyzes a global property, requiring to analyze every

possible input. Additionally, the size of these networks is comparable to other works evaluating

them [Chen et al. 2021; Kabaha and Drachsler-Cohen 2024; Reshef et al. 2024; Urban et al. 2020]. All

networks use ReLU as their activation function. We consider different quantization schemes (𝑆, 𝑏).
We next describe the scale factors 𝑆 , while the bit precision 𝑏 is specified in the experiments. The

scale factors 𝑆 = {(𝑠𝑚, 𝑠𝑊,𝑚) | 𝑚 ∈ [𝐿]} are determined by the Min-Max technique, for setting the

quantization range for symmetric quantization [Nagel et al. 2021]. For each layer𝑚, it defines the

scale factor of the weights as 𝑠𝑚,𝑊 = 2 ·max(|𝑤𝑚,𝑘 |)/(2𝑏 − 1). For the layer’s inputs, we consider
three clipping variations: (1) W-Min-Max, which uses the actual ranges of the neurons in the layer,

i.e., for each layer𝑚, the scale factor is 𝑠𝑚 =max(𝑢𝑚,𝑘)/(2𝑏 − 1). In this version, no clipping occurs,

(2) 𝛼-Min-Max, a scaled variant of W-Min-Max that introduces a factor 𝛼 ∈ [0, 1] to adjust the

range, defined as 𝑠𝑚 = 𝛼 · max(𝑢𝑚,𝑘)/(2𝑏 − 1), allowing controlled clipping, and (3) D-Min-Max,
which estimates the quantization range from a representative subset of the input space (we use the

training set). These variations cover a wide range of quantization schemes and trade-offs between

dynamic range coverage and clipping tolerance.

Baselines. CoMPAQt is novel in its ability to: (1) detect quantization classification inconsisten-

cies for any input at inference time, (2) mitigate these inconsistencies, and (3) provide a formal

guarantee on the classification consistency of the quantized network with its floating-point coun-

terpart. To the best of our knowledge, no existing work can detect such inconsistencies, let alone

mitigate them or provide a formal guarantee on the classification. Commonly used approaches

such as PTQ (Post-Training Quantization) and QAT (Quantization-Aware Training) are designed

to produce a quantized network that closely matches the floating-point classifier, but have no

formal guarantee on being classification consistent. We compare CoMPAQt to these approaches

for different quantization schemes. We implemented our baselines with the popular PyTorch

quantization library
1
. For PTQ, we follow the implementation described in Nagel et al. [2021],

where quantization is applied before the multiplication operations and sums are performed with

higher precision (Float32 in our experiments). The weights are quantized using a signed integer

scheme with W-Min-Max clipping, for each layer. For QAT, when 𝑏 = INT8, we use PyTorch’s

QuantStub, DeQuantStub, and torch.ao.quantization during network training. If 𝑏 = Float16,

we use torch.cuda.amp.autocast() during the forward pass of training. This enables an auto-

matic mixed precision: it casts operations to Float16 while maintaining numerical stability. We

convert the network to Float16 using the half() operation. All these components are part of the

standard PyTorch quantization workflow.

Evaluation metrics. To estimate the computational gain achieved by quantization and compare

different schemes, we use the matrix multiplication cost, which scales quadratically with the

quantization bit precision [Nagel et al. 2021]. For example, INT8 has a matrix multiplication cost

of 8 × 8 and INT16 has a cost of 16 × 16, which is higher by 4x. For floating-point schemes, the

multiplication is performed on the mantissa bits and it is 24× 24 for Float32 and 10× 10 for Float16.
Since APR and QEF-Ensemble transition between different quantization schemes, we define the total

matrix multiplication cost as the sum of all multiplication costs of the schemes. For example, when

APR runs both INT8 and INT16 quantized networks, the total multiplication cost is 8 × 8 + 16 × 16.
We define the effective bit precision 𝑏𝑑 (effective bits, for short) as the square root of the total

matrix multiplication cost. In this example, 𝑏𝑑 =
√
8 × 8 + 16 × 16 ≈ 17.8.

1
https://pytorch.org/docs/stable/quantization.html

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 340. Publication date: October 2025.

Quantization with Guaranteed Floating-Point Neural Network Classifications 340:19

Table 1. QEF bounds over PTQ-quantized networks (𝑇𝐶% is classification consistency on the test set, 𝛼 is 0.8).

Dataset Network Clipping INT8 INT12 INT16

𝑇 [ℎ] 𝑑 𝑇𝐶% 𝑇 [ℎ] 𝑑 𝑇𝐶% 𝑇 [ℎ] 𝑑 𝑇𝐶%

Adult 2 × 50 W-Min-Max 1.4 1.47 64.05 1.5 0.11 96.27 1.5 0.007 99.67

Adult 2 × 50 𝛼-Min-Max 1.5 1.43 63.34 1.5 0.12 96.06 1.4 0.015 99.44

Adult 2 × 50 D-Min-Max 1.3 1.61 64.35 1.5 0.12 96.01 1.5 0.011 99.56

Adult Conv W-Min-Max 0.9 1.23 59.59 1.5 0.11 96.60 1.5 0.007 99.77

Adult Conv D-Min-Max 1.5 1.67 59.64 1.5 0.12 96.49 1.3 0.014 99.55

Credit 2 × 50 W-Min-Max 1.2 0.93 80.75 1.5 0.08 99.04 1.5 0.005 99.9

Credit 2 × 50 𝛼-Min-Max 1.5 1.14 76.93 0.57 0.29 94.44 0.46 0.23 95.67

Credit Conv W-Min-Max 1.5 0.73 75.3 1.5 0.05 98.74 1.5 0.003 99.93

Credit Conv D-Min-Max 1.3 0.73 75.7 1.3 0.06 98.41 1.5 0.006 99.83

MNIST 2 × 50 W-Min-Max 0.4 1.85 13.95 0.68 0.16 90.98 1.46 0.012 99.42

MNIST 2 × 50 D-Min-Max 0.5 1.96 7.10 1.02 0.16 87.46 1.12 0.019 98.44

MNIST Conv W-Min-Max 0.77 6.80 15.0 0.96 0.44 94.86 1.5 0.027 99.62

Table 2. QEF bounds over QAT-quantized networks (𝑇𝐶% is classification consistency on the test set, 𝛼 is 0.8).

Dataset Network Clipping INT8 Float16

𝑇 [ℎ] 𝑑 𝑇𝐶% 𝑇 [ℎ] 𝑑 𝑇𝐶%

Adult 2 × 50 W-Min-Max 1.5 1.25 66.06 1.5 0.17 94.96

Adult 2 × 50 𝛼-Min-Max 1.5 1.34 63.34 1.3 0.20 93.92

Adult 2 × 50 D-Min-Max 0.9 1.87 52.05 1.5 0.53 82.78

Credit Conv W-Min-Max 1.3 0.44 95.53 1.2 0.08 99.0

Credit Conv D-Min-Max 1.5 0.59 93.18 0.5 0.29 96.3

Adult Conv W-Min-Max 1.2 0.62 81.38 1.5 0.12 95.57

Adult Conv D-Min-Max 1.1 1.02 71.45 1.5 0.15 94.64

CoMPAQt-QEF. We begin by studying the effectiveness of CoMPAQt-QEF. We evaluate it over PTQ-

and QAT-quantized networks. For PTQ, we evaluate three quantization precision levels: INT8,

INT12, and INT16. For QAT, we evaluate two quantization precision levels: INT8 and Float16. For the

scale factors, we consider W-Min-Max, 𝛼 = 0.8-Min-Max, and D-Min-Max. For each quantization

approach and scheme, we run CoMPAQt-QEF to compute the QEF bounds of all classes. Table 1 and

Table 2 report the average computed QEF bounds 𝑑 across all classes, and their average computation

time 𝑇 in hours. Table 1 presents the results for the PTQ networks, and Table 2 presents the

results for the QAT networks. To demonstrate the relevance of these bounds to the dataset’s inputs,

the tables also include the ratio of test set inputs whose classification confidence is above the

corresponding QEF bounds 𝑇𝐶% (i.e., the consistent classification rate). Table 1 indicates that for

INT8, CoMPAQt-QEF completes in 1.1 hours and its bounds guarantee classification consistency

for 54.7% of the test set inputs. For INT12, CoMPAQt-QEF completes in 1.72 hours and its bounds

guarantee consistency for 90.4% of the test set. For INT16, CoMPAQt-QEF completes in 1.4 hours and

its bounds guarantee consistency for 99.2% of the test set. Table 2 shows that for INT8, CoMPAQt-QEF
completes in 1.3 hours and its bounds guarantee consistency for 74.7% of the test set. For Float16,

CoMPAQt-QEF completes in 1.3 hours and its bounds guarantee consistency for 93.9% of the test set.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 340. Publication date: October 2025.

340:20 Anan Kabaha and Dana Drachsler Cohen

Table 3. APR vs. PTQ (𝑏𝑑 is effective bits, 𝑇𝐶% is classification consistency on the test set, 𝛼 is 0.8).

Dataset Network Clipping PTQ Consistency APR (ours) effective bits

𝑏𝑑 = 8 𝑏𝑑 = 12 𝑏𝑑 = 16 TC = 100% guaranteed

𝑇𝐶𝐼𝑁𝑇 8 𝑇𝐶𝐼𝑁𝑇 12 𝑇𝐶𝐼𝑁𝑇 16 𝑏𝐼𝑁𝑇 8
𝑑

𝑏𝐼𝑁𝑇 12
𝑑

𝑏𝐼𝑁𝑇 16
𝑑

[%] [%] [%]

Adult 2 × 50 W-Min-Max 98.69 99.94 99.99 10.91 12.43 16.05

Adult 2 × 50 𝛼-Min-Max 98.79 99.95 100 11.02 12.51 16.09

Adult 2 × 50 D-Min-Max 98.76 99.94 100 11.07 12.57 16.07

Adult Conv W-Min-Max 96.97 99.87 99.99 11.32 12.49 16.07

Adult Conv D-Min-Max 96.84 99.88 99.99 11.23 12.48 16.07

Credit 2 × 50 W-Min-Max 99.82 99.99 100 9.64 12.11 16.01

Credit 2 × 50 𝛼-Min-Max 99.83 99.99 99.9 10.82 13.11 16.75

Credit Conv W-Min-Max 99.46 99.96 100 10.05 12.14 16.01

Credit Conv D-Min-Max 99.47 99.97 100 10.06 12.19 16.02

MNIST 2 × 50 W-Min-Max 98.66 99.91 99.99 14.6 13.34 16.14

MNIST 2 × 50 D-Min-Max 98.71 99.88 99.99 14.72 13.45 16.27

MNIST Conv W-Min-Max 99.03 99.92 99.99 13.9 12.58 16.06

APR. We compare APR (Algorithm 2), eliminating all classification inconsistencies, to PTQ and

QAT. When comparing to PTQ, APR has the bit precision series (INT8, INT12, INT16, Float32) or the

subseries starting from INT12 and INT16 (called by their lowest bit precision). When comparing

to QAT, APR has the bit precisions (INT8, Float16, Float32) and its subseries starting from Float16.

For each approach (PTQ/QAT) and series, we run APR over all the test set and compute the total

multiplication cost. For example, if for input 𝑥 and the series starting from INT8, the quantized

network 𝑁 8

𝑞 ’s classification is consistent, the total multiplication cost is 8×8. If refinement to INT12

is required, the total cost is 8×8+12×12. Given the total cost of all inputs in the test set, we compute

the average cost and accordingly the effective bit precision 𝑏𝑑 (the bit precision required to achieve

the cost). The effective bit precision quantifies the overhead needed to achieve a perfect classification
consistency with the floating-point network while still benefiting from quantization. Table 3 and

Table 4 report the 𝑇𝐶% of the standard PTQ and QAT, respectively, and our APR’s effective bit
precision 𝑏𝑑 . Note that our APR’s 𝑇𝐶% is guaranteed to be 100%, and the baselines’ 𝑏𝑑 is the bit

precision. Table 3 shows that, for the test set, APR with the series of INT8 is 100% classification

consistent with the Float32 classifier and its effective bit precision is 𝑏𝐼𝑁𝑇 8
𝑑

= 11.61. Namely, it

reduces the multiplication cost by 4.27x compared to the floating-point classifier. Compared to the

PTQ INT8 counterpart, its cost is higher by 2.1x, but the PTQ baseline does not achieve perfect

consistency and does not provide the user any guarantee for any input. For APR with the series

of INT12, the effective bit precision is 𝑏𝐼𝑁𝑇 12
𝑑

= 12.61, reducing the multiplication cost by 3.62x

compared to the floating-point classifier and increasing the cost by 1.1x compared to the PTQ INT12

counterpart. For APR with the series of INT16, the effective bit precision is 𝑏𝐼𝑁𝑇 16
𝑑

= 16.13, reducing

the multiplication cost by 2.21x compared to the floating-point classifier and increasing the cost

by 1.01x compared to the PTQ INT16 counterpart. Table 4 shows that the effective bit precision

of APR with the series of INT8 is 𝑏𝐼𝑁𝑇 8
𝑑

= 11.09, reducing the floating-point multiplication cost by

4.68x and increasing the multiplication cost of the QAT INT8 counterpart by 1.92x. The effective

bit precision of APR with the series of FLOAT16 is 𝑏𝐹𝐿𝑂𝐴𝑇 16
𝑑

= 11.57, reducing the floating-point

multiplication cost by 4.3x and increasing the cost of the QAT Float16 counterpart by 1.33x.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 340. Publication date: October 2025.

Quantization with Guaranteed Floating-Point Neural Network Classifications 340:21

Table 4. APR vs. QAT (𝑏𝑑 is effective bits, 𝑇𝐶% is classification consistency on the test set, 𝛼 is 0.8).

Dataset Network Clipping QAT Consistency APR (ours) effective bit precision

𝑏𝑑 = 8 𝑏𝑑 = 10 TC = 100% guaranteed

𝑇𝐶𝐼𝑁𝑇 8 𝑇𝐶𝐹𝐿𝑂𝐴𝑇 16 𝑏𝐼𝑁𝑇 8
𝑑

𝑏𝐹𝐿𝑂𝐴𝑇 16
𝑑

[%] [%]

Adult 2 × 50 W-Min-Max 99.35 99.99 11.04 11.35

Adult 2 × 50 𝛼-Min-Max 99.49 100 11.54 11.61

Adult 2 × 50 D-Min-Max 99.55 99.99 13.92 14.11

Credit Conv W-Min-Max 99.86 100 8.79 10.28

Credit Conv D-Min-Max 99.80 100 9.58 11.01

Adult Conv W-Min-Max 98.97 99.99 11.03 11.20

Adult Conv D-Min-Max 98.85 99.99 11.75 11.43

Table 5. QEF-Ensemble vs. PTQ (𝑏𝑑 is effective bits, 𝑇𝐶% is classification consistency on the test set). Clip.
stands for Clipping, Con. for consistency, W-M. for W-Min-Max, and D-M. for D-Min-Max.

Dataset Model Clip. b PTQ Con. Model #1 Model #2 Model #3 Model #4

𝑇𝐶 𝑇𝐶 𝑏𝑑 𝑇𝐶 𝑏𝑑 𝑇𝐶 𝑏𝑑 𝑇𝐶 𝑏𝑑
[%] [%] [%] [%] [%]

Adult 2 × 50 W-M. 16 99.99 99.68 16 100.0 16.025 - - - -

Adult 2 × 50 D-M. 16 99.99 98.32 16 99.94 16.02 99.993 16.03 100 16.3

Adult 2 × 50 W-M. 12 99.93 99.65 12 100.0 12.02 - - - -

Adult 2 × 50 D-M. 12 99.91 95.82 12 98.15 12.24 99.90 12.35 100 12.36

Credit Conv W-M. 12 99.88 99.62 12 100 12.02 - - - -

Credit Conv W-M. 8 99.48 94.83 8 97.67 8.20 98.02 8.29 99.97 8.37

QEF-Ensemble. We evaluate QEF-Ensemble (Algorithm 3) over the fully connected 2×50 net-
work of the Adult dataset and over the convolutional network of the Credit dataset. For each,

QEF-Ensemble creates an ensemble of four PTQ-quantized networks (called models). It considers

the W-Min-Max or D-Min-Max clipping and the bit precisions INT8, INT12, or INT16. For each

configuration, QEF-Ensemble first computes the QEF bounds of all models and classes. Then, we

run QEF-Ensemble on all inputs in the test set. The total multiplication cost of QEF-Ensemble on
an input 𝑥 is the multiplication cost of the bit precision multiplied by the number of models used

until QEF-Ensemble returns the classification. For example, for INT12, given an input 𝑥 , if the

first model returns a consistent classification, its cost is 12 × 12 and its effective bit precision is

𝑏𝐼𝑁𝑇 12
𝑑

= 12. Generally, if 𝑥 passes through𝑚 models, its multiplication cost is𝑚 × 12 × 12, and
its effective bit precision is 𝑏𝐼𝑁𝑇 12

𝑑
=
√
𝑚 × 12 × 12. Table 5 reports the classification consistency

𝑇𝐶% of the standard PTQ and of QEF-Ensemble. For QEF-Ensemble, it also reports the effective bit
precision 𝑏𝑑 . The table details the accumulated 𝑇𝐶% and 𝑏𝑑 for each model. Namely, for Model #1,

the table shows the 𝑇𝐶% and 𝑏𝑑 , over all inputs in the test set, after passing them only through

Model #1. For Model #2, the table shows the 𝑇𝐶% and 𝑏𝑑 , over all inputs in the test set, where

inputs that Model #1 could not guarantee consistency are passed through Model #2. For Model #3,

the table shows the 𝑇𝐶% and 𝑏𝑑 , over all inputs in the test set, where inputs that Model #2 could

not guarantee consistency are passed through Model #3. Similarly, for Model #4. The symbol “-”

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 340. Publication date: October 2025.

340:22 Anan Kabaha and Dana Drachsler Cohen

𝐎𝐫𝐢𝐠𝐢𝐧𝐚𝐥 𝐒𝐧𝐨𝐰 𝐈𝐦𝐩𝐮𝐥𝐬𝐞 𝐍𝐨𝐢𝐬𝐞

𝐃𝐞𝐟𝐨𝐜𝐮𝐬 𝐁𝐥𝐮𝐫 𝐌𝐨𝐭𝐢𝐨𝐧 𝐁𝐥𝐮𝐫𝐉𝐏𝐄𝐆

(𝒂) (𝒃)

Fig. 5. CoMPAQt+APR’s effective bit precision over out-of-distribution datasets.

denotes cases where a model is not invoked for any input in the test set (i.e., perfect consistency is

obtained with fewer models). For the 2 × 50 classifier, the results show that QEF-Ensemble with
bit precision INT16 or INT12 achieves perfect consistency with the floating-point classifier and

the effective bit precision is 𝑏𝐼𝑁𝑇 16
𝑑

= 16.16 and 𝑏𝐼𝑁𝑇 12
𝑑

= 12.19 (on the test set). This reduces the

multiplication cost of the floating-point classifier by 2.2x and 3.87x, respectively. It increases the

cost of the PTQ baseline counterparts by only 1.02x and 1.03x, respectively. The PTQ baseline’s

classification consistency is 99.95% on average. However, QEF-Ensemble returns an indication to
the user that all its classifications are consistent with the floating-point classifier, whereas the PTQ

baseline cannot guarantee consistency for any input. For the convolutional classifier, QEF-Ensemble
with bit precision INT12 achieves perfect consistency with the floating-point classifier and its

effective bit precision is 𝑏𝐼𝑁𝑇 12
𝑑

= 12.02 (on the test set). This reduces the multiplication cost of the

floating-point classifier by 3.98x and increases the cost of its PTQ baseline counterpart by only

1.003x. For the bit precision INT8, QEF-Ensemble obtains a consistency of 99.97%, improving the

consistency of a single model by 5.14% and outperforming the PTQ baseline’s consistency. While

QEF-Ensemble does not achieve perfect consistency in this case, it still notifies the user when

consistency cannot be guaranteed, unlike the PTQ baseline.

CoMPAQt on out-of-distribution inputs. We study the effective bit precision of CoMPAQt with APR
on out-of-distribution dataset variations. We remind that APR guarantees perfect classification

consistency for every input, including out-of-distribution inputs. We focus on common corruptions

and perturbations [Hendrycks and Dietterich 2019], including snow, impulse noise, defocus blur,

JPEG compression, and motion blur, exemplified in Figure 5(a). For each, we generate a dataset

consisting of the perturbation of every input in the MNIST test set. We run APR for the convolutional
MNIST classifier, the bit precision series (INT8, INT12, INT16, Float32) or its subseries (similarly to

the experiments of Table 3), and with PTQ and the W-Min-Max clipping. Figure 5(b) shows the

effective bit precision of APR. Results show that the effective bit precision of out-of-distribution

datasets is similar to that of the test set (Table 3): 𝑏𝐼𝑁𝑇 8
𝑑

= 13.75 ± 0.22, 𝑏𝐼𝑁𝑇 12
𝑑

= 12.67 ± 0.15, and
𝑏𝐼𝑁𝑇 16
𝑑

= 16.07 ± 0.023. This demonstrates the efficiency of APR in guaranteeing floating-point

classifications with significantly lower multiplication cost for every input.

Case study: airplane collision avoidance. We demonstrate the importance of guaranteed classi-

fication consistency by simulating a navigation-based system. This system implements airplane

collision avoidance, and it relies on networks trained on the ACAS-Xu dataset [Julian et al. 2018].

Its objective is to take navigation decisions for an airplane (Ownship) that prevent collisions with

another airplane (Intruder). It is equipped with five neural network classifiers, each trained on

five input features: Ownship’s velocity, Intruder’s velocity, their distance, the angle to Intruder,

and Ownship’s heading angle. The networks classify each input into one of five advisory actions:

clear-of-conflict, strong-right, weak-right, strong-left, or weak-left. We use these networks to train

five fully connected network classifiers with two hidden layers, each with 25 neurons. We focus

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 340. Publication date: October 2025.

Quantization with Guaranteed Floating-Point Neural Network Classifications 340:23

Algorithm 4: Continuous APR
1 Function Continuous-APR-Inference(𝑥)

Input: An input 𝑥 .

Output: A classification consistent with 𝑁 minimizing the computational cost.

Parameter :A persistent variable 𝑛𝑒𝑥𝑡_𝑏, initialized to 1.

2 foreach 𝑖 ∈ {𝑛𝑒𝑥𝑡_𝑏, . . . , 𝐾 + 1} do
3 𝑧𝐿 ← 𝑖 ≤ 𝐾? 𝑁𝑏𝑖𝑞 (𝑥) : 𝑁 (𝑥) // Quantized or floating-point network

4 𝑐 ← argmax 𝑧𝐿 // Predicted class

5 if 𝑖 = 𝐾 + 1 or 𝑧𝐿,𝑐 −max𝑐′≠𝑐 𝑧𝐿,𝑐′ > 𝑑 [𝑖] [𝑐] then // QEF bound is met
6 𝑛𝑒𝑥𝑡_𝑏 ← 𝑖

7 foreach 𝑗 ∈ [𝑖 − 1] do
8 if 𝑧𝐿,𝑐 −max𝑐′≠𝑐 𝑧𝐿,𝑐′ > 𝑑 [𝑗] [𝑐] then 𝑛𝑒𝑥𝑡_𝑏 ← 𝑗 ; break

9 return 𝑐

on PTQ quantization and consider four bit precisions: INT4, INT8, INT12, and INT16. We adapt

APR to a continuous setting, where consecutive inputs are very similar and thus expected to have

similar classification confidence. Compared to APR, Continuous-APR (Algorithm 4) stores the bit

precision that enabled to provide classification consistent with the floating-point in 𝑛𝑒𝑥𝑡_𝑏, so
the next iteration begins from this bit precision. To enable lowering the bit precision, it heuristi-

cally decreases 𝑛𝑒𝑥𝑡_𝑏 to the lowest precision whose QEF bound is lower than the current input’s

confidence. We run 10,000 simulations of airplane dynamics, using the ACAS-Xu closed-loop

simulation falsification benchmark
2
. Each simulation begins by random coordinates and velocities

for Ownship and Intruder and it runs for 300 seconds, invoking Continuous-APRwith one classifier
per second (the classifier is determined by the previous classifier’s result). Figure 6 provides a

visualization of one simulation, where Figure 6(a) shows the Ownship O and the Intruder I at time

zero. Figures 6(b-d) illustrate the dynamics of Ownship navigating to avoid collision when using the

floating-point networks (serving as our baseline) at time steps 50, 100, and 150. Figure 6(e) shows

the paths taken by Ownship when using CoMPAQt with Continuous-APR. Figures 6(f)–(i) show the

paths taken by Ownship using the PTQ baselines: INT4, INT8, INT12, and INT16, respectively.

Figure 6(e) shows that CoMPAQt successfully follows the exact same path of the floating-point

networks with an effective bit precision of only 10.77 bits, reducing the multiplication cost by 4.96x.

In particular, it calls the 8-bit classifier in 40.54% time steps, the 12-bit classifier in 51.35% time

steps, the 16-bit classifier in only 8.11% time steps, and it never calls the floating-point classifier.

Figure 6(f) shows that the INT4 networks follow a completely different path, bringing the airplanes

dangerously close (less than 500 ft), indicating a potential collision risk. Figure 6(g) shows that the

INT8 networks also follow a different path than the floating-point networks but maintain a safe

navigation distance. Figure 6(h-i) show that the INT12 and INT16 networks compute the same path

as the floating-point networks. However, they pose higher multiplication cost than CoMPAQt (1.25x

and 2.23x, respectively), without offering any guarantee that their flight paths align with those of

the floating-point networks. Over the 10,000 simulations, CoMPAQt achieves an average effective bit

precision of 9.76, reducing the floating-point multiplication cost by 6.25x, while maintaining zero

path differences. The average path differences for the INT16, INT12, INT8, and INT4 networks are

4,669 ft, 18,202 ft, 72,104 ft, and 1,295,527 ft, respectively – significantly far from the desired path.

2
https://github.com/stanleybak/acasxu_closed_loop_sim.git

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 340. Publication date: October 2025.

https://github.com/stanleybak/acasxu_closed_loop_sim.git

340:24 Anan Kabaha and Dana Drachsler Cohen

𝚰

𝚶

𝚰

𝚰

𝚰𝚶 𝚶

𝚶

Time: 0 Time: 50 Time: 100 Time: 150

Y
 P

o
si

ti
o

n
 (

ft
)

X Position (ft) X Position (ft) X Position (ft) X Position (ft)

𝟒𝒆𝟒

3𝒆𝟒

2𝒆𝟒

1𝒆𝟒

0

-1𝒆𝟒

-2𝒆𝟒

-3𝒆𝟒 -2𝒆𝟒 -1𝒆𝟒 0 1𝒆𝟒 2𝒆𝟒 -3𝒆𝟒 -2𝒆𝟒 -1𝒆𝟒 0 1𝒆𝟒 2𝒆𝟒 -3𝒆𝟒 -2𝒆𝟒 -1𝒆𝟒 0 1𝒆𝟒 2𝒆𝟒
-3𝒆𝟒 -2𝒆𝟒 -1𝒆𝟒 0 1𝒆𝟒 2𝒆𝟒

(𝒂) (𝒃) (𝒄) (𝒅)

(𝒆) (𝒇) (𝒈) (𝒉) (𝒊)

Y
 P

o
si

ti
o

n
 (

ft
)

1𝒆𝟒

0

-1𝒆𝟒

-2𝒆𝟒

-3𝒆𝟒

11 11 11 11 11

-3𝒆𝟒 -2𝒆𝟒 -1𝒆𝟒 0

X Position (ft)

-3𝒆𝟒 -2𝒆𝟒 -1𝒆𝟒 0

X Position (ft)

-3𝒆𝟒 -2𝒆𝟒 -1𝒆𝟒 0

X Position (ft)

-3𝒆𝟒 -2𝒆𝟒 -1𝒆𝟒 0

X Position (ft)

-3𝒆𝟒 -2𝒆𝟒 -1𝒆𝟒 0

X Position (ft)

Strong left
Weak left
Clear of conflict

Strong left
Weak left
Clear of conflict

Strong left
Weak left
Clear of conflict

Strong left
Weak left
Clear of conflict

Float32
8-bit
12-bit
16-bit

Float32
4-bit

Float32
8-bit

Float32
12-bit

Float32
16-bit

Fig. 6. ACAS-Xu case study: (a)–(d) locations of Ownship and Intruder, when relying on the floating-point
networks, (e) the Ownship’s path when relying on CoMPAQt+Continuous-APR (f)–(i) the Ownship’s path
when relying on standard PTQ-quantized networks, for different bit precisions.

Table 6. Ablation study over CoMPAQt-QEF’s components.

Dataset Network Bit precision MO MO+R MO+R+P CoMPAQt

𝑇 [ℎ] 𝑑 𝑇 [ℎ] 𝑑 𝑇 [𝑠] 𝑑 𝑇 [𝑠] 𝑑

Credit 2x50 INT16 1.5 5.54 1.46 0.23 0.81 0.24 0.46 0.23

INT12 1.5 2.50 1.5 0.32 0.87 0.26 0.57 0.29

INT8 1.5 3.38 1.5 1.36 1.5 1.14 1.5 1.14

Ablation study. Lastly, we evaluate the effectiveness of CoMPAQt-QEF’s components. We con-

sider several variants: (1) MILP-only (MO): CoMPAQt-QEF without relations and linear relaxations,

(2) MILP with relations (MO+R): CoMPAQt-QEF without linear relaxations, (3) MILP with relations

and parallelogram (MO+R+P): CoMPAQt-QEF with relations and the parallelogram linear relaxation.

We evaluate CoMPAQt-QEF and its variants on the 2 × 50 network for Credit, for the bit precisions

INT16, INT12, INT8, with PTQ and the 𝛼-Min-Max clipping (𝛼 = 0.8). We remind that the time

limit is 1.5 hours. Table 6 reports the average QEF bound 𝑑 over all classes and the computation

time 𝑇 in hours. Our results indicate that MO computes very loose bounds, which are 11.89x higher

than that of CoMPAQt-QEF. Its computation time is 2.29x higher. MO+R significantly accelerates the

computation time, resulting in tighter bounds than MO. However, its computation times are higher

by 2.26x than CoMPAQt-QEF and its bounds are 1.1x looser than CoMPAQt-QEF. MO+R+P has tighter
bounds and reduces computation time. However, it is slower by 1.42x than CoMPAQt-QEF. Its bounds
are slightly tighter by 1.03x than CoMPAQt-QEF since it does not rely on the trapezoid relaxation.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 340. Publication date: October 2025.

Quantization with Guaranteed Floating-Point Neural Network Classifications 340:25

7 Related Work
In this section, we discuss the closest related work to ours.

Quantized neural networks and their analysis. Several works propose post-training quantization

schemes for neural networks targeting either network weights or activation outputs [Banner et al.

2019; Hubara et al. 2021; Zhang et al. 2023]. Others introduce training schemes that take into account

quantization during the training process [Jacob et al. 2018; Wang et al. 2018; Zhuang et al. 2018].

Several works propose verifiers for quantized networks. Some works analyze their local robustness

against adversarial attacks [Huang et al. 2024; Lin et al. 2021; Yang et al. 2024; Zhang et al. 2022].

Other work expedites this analysis for different quantization schemes by proof transfer [Ugare

et al. 2022]. Another work offers probabilistic guarantees over the quantization noise [Zhang et al.

2023]. In contrast, CoMPAQt provides a deterministic formal quantization guarantee for any input.

Several works propose quantization schemes with error bounds, either by bounding the difference

between the output of the floating-point classifier and the output of the quantized classifier or by

guaranteeing a specific round-off error bound [Ben Khalifa and Martel 2024; Lohar et al. 2023].

However, unlike CoMPAQt, these approaches cannot detect or correct classification inconsistencies,

and their formal guarantees are tightly coupled with their customized quantization scheme.

Multiple network analysis. CoMPAQt computes the QEF bound by analyzing two networks. Several
works analyze multiple networks or network copies. Some works offer differential verification, com-

puting the output differences of two networks [Paulsen et al. 2020a,b]. Others focus on incremental

verification, studying the differences between a network and its slightly modified version [Ugare

et al. 2023]. Some works propose proof transfer between similar networks to verify local robust-

ness [Ugare et al. 2022]. Global robustness verifiers compare the outputs of two network copies, for

an input and its perturbed version [Kabaha and Drachsler-Cohen 2024; Wang et al. 2022a,b].

8 Conclusion and Future Work
We present CoMPAQt, a system providing a formal guarantee on the classification inconsistencies

caused by a quantization scheme to a neural network. CoMPAQt overapproximates all classification

inconsistencies with the QEF bound. It computes this bound by relying on a novel MILP encoding

for quantization. To scale, it relies on linear relaxations and relations between the quantized

computations to their floating-point ones. We introduce two correction mechanisms that, given

the QEF bounds, identify inputs introducing classification inconsistencies at inference and mitigate

them. Our first mechanism guarantees returning a classification consistent with the floating-point

network, by considering networks with increasing bit precision. Our second mechanism mitigates

classification inconsistencies with an ensemble of quantized networks. We evaluate CoMPAQt
on tabular datasets, MNIST, and ACAS-Xu. Our results show that CoMPAQt and our correction

mechanisms provide a guarantee on all inputs while reducing computational cost by 3.9x.

An interesting direction for future work is to rely on the QEF bounds to guide the selection of

quantization schemes. For example, one could invoke CoMPAQt to compute the QEF bounds of differ-
ent schemes and adapt the schemes with the goal of lowering the bounds. Such an extension could

further motivate research on incremental QEF analysis to reduce the computation time. Another

promising direction is to extend CoMPAQt to quantized networks that may exhibit inaccuracy or

non-determinism due to hardware-induced effects such as noise, rounding imprecision, or bit-flip

faults. Previous work has shown that such hardware-level effects can be effectively encoded as

MILP [He et al. 2019; Schwan et al. 2023; Zhang et al. 2025]. Such an extension could enhance

CoMPAQt’s applicability in real-world safety-critical deployments.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 340. Publication date: October 2025.

340:26 Anan Kabaha and Dana Drachsler Cohen

Acknowledgements
We thank the anonymous reviewers for their feedback. This research was supported by the Israel

Science Foundation (grant No. 2607/25).

Data-Availability Statement
Our code is available at https://github.com/ananmkabaha/CoMPAQt.git.

References
Mislav Balunovic and Martin T. Vechev. 2020. Adversarial Training and Provable Defenses: Bridging the Gap. In ICLR (2020).

https://openreview.net/forum?id=SJxSDxrKDr

Debangshu Banerjee, Changming Xu, and Gagandeep Singh. 2024. Input-Relational Verification of Deep Neural Networks.

In PLDI (2024). doi:10.1145/3656377
Ron Banner, Yury Nahshan, and Daniel Soudry. 2019. Post training 4-bit quantization of convolutional networks for rapid-

deployment. In NeurIPS (2019). https://proceedings.neurips.cc/paper/2019/hash/c0a62e133894cdce435bcb4a5df1db2d-

Abstract.html

Barry Becker and Ronny Kohavi. 1996. Adult. UCI Machine Learning Repository. https://doi.org/10.24432/C5XW20

Dorra Ben Khalifa and Matthieu Martel. 2024. Efficient Implementation of Neural Networks Usual Layers on Fixed-Point

Architecture. In LCTES (2024). doi:10.1145/3652032.3657578
Arun Chauhan, Utsav Tiwari, and Vikram N. R. 2023. Post Training Mixed Precision Quantization of Neural Networks

using First-Order Information. In IEEE/CVF Workshops (2023). doi:10.1109/ICCVW60793.2023.00144

Yizheng Chen, Shiqi Wang, Yue Qin, Xiaojing Liao, Suman Jana, and David A. Wagner. 2021. Learning Security Classifiers

with Verified Global Robustness Properties. In CCS (2021). doi:10.1145/3460120.3484776
Zhen Dong, Zhewei Yao, Amir Gholami, Michael W. Mahoney, and Kurt Keutzer. 2019. HAWQ: Hessian AWare Quantization

of Neural Networks With Mixed-Precision. In ICCV (2019). doi:10.1109/ICCV.2019.00038

Rüdiger Ehlers. 2017. Formal Verification of Piece-Wise Linear Feed-Forward Neural Networks. In ATVA, Deepak D’Souza

and K. Narayan Kumar (Eds.), Vol. 10482. Springer, 269–286. doi:10.1007/978-3-319-68167-2_19

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT Press. http://www.deeplearningbook.org.

Gurobi Optimization, LLC. 2024. Gurobi Optimizer Reference Manual. https://www.gurobi.com

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual Learning for Image Recognition. In CVPR
(2016). doi:10.1109/CVPR.2016.90

Zichang He, Weilong Cui, Chunfeng Cui, Timothy Sherwood, and Zheng Zhang. 2019. Efficient Uncertainty Modeling for

System Design via Mixed Integer Programming. In ICCAD (2019). doi:10.1109/ICCAD45719.2019.8942139

Dan Hendrycks and Thomas G. Dietterich. 2019. Benchmarking Neural Network Robustness to Common Corruptions and

Perturbations. In ICLR (2019). https://openreview.net/forum?id=HJz6tiCqYm

Qiang Hu, Yuejun Guo, Maxime Cordy, Xiaofei Xie, Wei Ma, Mike Papadakis, and Yves Le Traon. 2022. Characterizing and

Understanding the Behavior of Quantized Models for Reliable Deployment. In CoRR abs/2204.04220 (2022). doi:10.48550/
ARXIV.2204.04220

Pei Huang, Haoze Wu, Yuting Yang, Ieva Daukantas, Min Wu, Yedi Zhang, and Clark W. Barrett. 2024. Towards Efficient

Verification of Quantized Neural Networks. In AAAI (2024). doi:10.1609/AAAI.V38I19.30108
Itay Hubara, Yury Nahshan, Yair Hanani, Ron Banner, and Daniel Soudry. 2021. Accurate Post Training Quantization With

Small Calibration Sets. In ICML (2021). http://proceedings.mlr.press/v139/hubara21a.html

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew G. Howard, Hartwig Adam, and Dmitry

Kalenichenko. 2018. Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference. In
CVPR (2018). doi:10.1109/CVPR.2018.00286

Kyle D. Julian, Mykel J. Kochenderfer, and Michael P. Owen. 2018. Deep Neural Network Compression for Aircraft Collision

Avoidance Systems. abs/1810.04240 (2018). http://arxiv.org/abs/1810.04240

Anan Kabaha and Dana Drachsler-Cohen. 2024. Verification of Neural Networks’ Global Robustness. In OOPSLA1 (2024).
doi:10.1145/3649847

Anan Kabaha and Dana Drachsler-Cohen. 2025. Guarding the Privacy of Label-Only Access to Neural Network Classifiers

via iDP Verification. In OOPSLA1 (2025). doi:10.1145/3720480
Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer. 2017. Reluplex: An Efficient SMT Solver

for Verifying Deep Neural Networks. In CAV (2017). doi:10.1007/978-3-319-63387-9_5

Yann LeCun, Leon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-based learning applied to document

recognition. In Proc. IEEE (1998). doi:10.1109/5.726791

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 340. Publication date: October 2025.

https://github.com/ananmkabaha/CoMPAQt.git
https://openreview.net/forum?id=SJxSDxrKDr
https://doi.org/10.1145/3656377
https://proceedings.neurips.cc/paper/2019/hash/c0a62e133894cdce435bcb4a5df1db2d-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/c0a62e133894cdce435bcb4a5df1db2d-Abstract.html
https://doi.org/10.24432/C5XW20
https://doi.org/10.1145/3652032.3657578
https://doi.org/10.1109/ICCVW60793.2023.00144
https://doi.org/10.1145/3460120.3484776
https://doi.org/10.1109/ICCV.2019.00038
https://doi.org/10.1007/978-3-319-68167-2_19
http://www.deeplearningbook.org
https://www.gurobi.com
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/ICCAD45719.2019.8942139
https://openreview.net/forum?id=HJz6tiCqYm
https://doi.org/10.48550/ARXIV.2204.04220
https://doi.org/10.48550/ARXIV.2204.04220
https://doi.org/10.1609/AAAI.V38I19.30108
http://proceedings.mlr.press/v139/hubara21a.html
https://doi.org/10.1109/CVPR.2018.00286
http://arxiv.org/abs/1810.04240
https://doi.org/10.1145/3649847
https://doi.org/10.1145/3720480
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1109/5.726791

Quantization with Guaranteed Floating-Point Neural Network Classifications 340:27

Yann LeCun and et al. 1989. Backpropagation Applied to Handwritten Zip Code Recognition. In Neural Comput (1989).
doi:10.1162/NECO.1989.1.4.541

En Li, Liekang Zeng, Zhi Zhou, and Xu Chen. 2019. Edge AI: On-Demand Accelerating Deep Neural Network Inference via

Edge Computing. In CoRR abs/1910.05316 (2019). http://arxiv.org/abs/1910.05316

Haowen Lin, Jian Lou, Li Xiong, and Cyrus Shahabi. 2021. Integer-arithmetic-only Certified Robustness for Quantized

Neural Networks. In ICCV (2021). doi:10.1109/ICCV48922.2021.00773

Ji Lin,Wei-Ming Chen, Yujun Lin, John Cohn, Chuang Gan, and SongHan. 2020. MCUNet: Tiny Deep Learning on IoTDevices.

In NeurIPS (2020). https://proceedings.neurips.cc/paper/2020/hash/86c51678350f656dcc7f490a43946ee5-Abstract.html

Shiya Liu, Dong Sam Ha, Fangyang Shen, and Yang Yi. 2021. Efficient neural networks for edge devices. In Computers and
Electrical Engineering 92 (2021), 107121. doi:10.1016/J.COMPELECENG.2021.107121

Debasmita Lohar, Clothilde Jeangoudoux, Anastasia Volkova, and Eva Darulova. 2023. SoundMixed Fixed-Point Quantization

of Neural Networks. In ACM Trans. Embed. Comput. Syst. (2023). doi:10.1145/3609118
Tao Luo, Weng-Fai Wong, Rick Siow Mong Goh, Anh Tuan Do, Zhixian Chen, Haizhou Li, Wenyu Jiang, and Weiyun

Yau. 2023. Achieving Green AI with Energy-Efficient Deep Learning Using Neuromorphic Computing. In ACM (2023).

doi:10.1145/3588591

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. 2018. Towards Deep Learning

Models Resistant to Adversarial Attacks. In ICLR (2018). https://openreview.net/forum?id=rJzIBfZAb

Mark Niklas Müller, Gleb Makarchuk, Gagandeep Singh, Markus Püschel, and Martin T. Vechev. 2022. PRIMA: general and

precise neural network certification via scalable convex hull approximations. In POPL (2022). doi:10.1145/3498704

Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko, Mart van Baalen, and Tijmen Blankevoort. 2021.

A White Paper on Neural Network Quantization. In CoRR abs/2106.08295 (2021). https://arxiv.org/abs/2106.08295

Tianyu Pang, Kun Xu, Chao Du, Ning Chen, and Jun Zhu. 2019. Improving Adversarial Robustness via Promoting Ensemble

Diversity. In ICML (2019). http://proceedings.mlr.press/v97/pang19a.html

Brandon Paulsen, Jingbo Wang, and Chao Wang. 2020a. ReluDiff: differential verification of deep neural networks. In ICSE
(2020). doi:10.1145/3377811.3380337

Brandon Paulsen, Jingbo Wang, Jiawei Wang, and Chao Wang. 2020b. NEURODIFF: Scalable Differential Verification of

Neural Networks using Fine-Grained Approximation. In ASE (2020). doi:10.1145/3324884.3416560

Roie Reshef, Anan Kabaha, Olga Seleznova, and Dana Drachsler-Cohen. 2024. Verification of Neural Networks’ Local

Differential Classification Privacy. In VMCAI (2024). doi:10.1007/978-3-031-50521-8_5
Roland Schwan, Colin N. Jones, and Daniel Kuhn. 2023. Stability Verification of Neural Network Controllers Using

Mixed-Integer Programming. In IEEE Trans. Autom. Control (2023). doi:10.1109/TAC.2023.3283213
Haihao Shen, Naveen Mellempudi, Xin He, Qun Gao, Chang Wang, and Mengni Wang. 2024. Efficient Post-training

Quantization with FP8 Formats. In MLSys (2024). https://proceedings.mlsys.org/paper_files/paper/2024/hash/

dea9b4b6f55ae611c54065d6fc750755-Abstract-Conference.html

Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin T. Vechev. 2019a. An abstract domain for certifying neural

networks. In POPL (2019). doi:10.1145/3290354

Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin T. Vechev. 2019b. Boosting Robustness Certification of Neural

Networks. In ICLR (2019). https://openreview.net/forum?id=HJgeEh09KQ

Thilo Strauss, Markus Hanselmann, Andrej Junginger, and Holger Ulmer. 2017. EnsembleMethods as a Defense to Adversarial

Perturbations Against Deep Neural Networks. In abs/1709.03423 (2017). http://arxiv.org/abs/1709.03423

Mingxing Tan and Quoc V. Le. 2019. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In ICML
(2019). http://proceedings.mlr.press/v97/tan19a.html

Vincent Tjeng, Kai Y. Xiao, and Russ Tedrake. 2019. Evaluating robustness of neural networks with mixed integer

programming. In ICLR (2019). https://openreview.net/forum?id=HyGIdiRqtm

Shubham Ugare, Debangshu Banerjee, Sasa Misailovic, and Gagandeep Singh. 2023. Incremental Verification of Neural

Networks. In PLDI (2023). doi:10.1145/3591299
Shubham Ugare, Gagandeep Singh, and Sasa Misailovic. 2022. Proof transfer for fast certification of multiple approximate

neural networks. In OOPSLA1 (2022). doi:10.1145/3527319
Caterina Urban, Maria Christakis, Valentin Wüstholz, and Fuyuan Zhang. 2020. Perfectly parallel fairness certification of

neural networks. In OOPSLA (2020). doi:10.1145/3428253

Robert J. Vanderbei. 1996. Linear Programming: Foundations and Extensions. (1996). doi:10.1007/978-3-030-39415-8

Naigang Wang, Jungwook Choi, Daniel Brand, Chia-Yu Chen, and Kailash Gopalakrishnan. 2018. Training Deep Neural

Networks with 8-bit Floating Point Numbers. In NeurIPS (2018). https://proceedings.neurips.cc/paper/2018/hash/

335d3d1cd7ef05ec77714a215134914c-Abstract.html

Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and J Zico Kolter. 2021. Beta-CROWN: Efficient

Bound Propagation with Per-neuron Split Constraints for Neural Network Robustness Verification. In NeurIPS (2021).
https://proceedings.neurips.cc/paper/2021/hash/fac7fead96dafceaf80c1daffeae82a4-Abstract.html

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 340. Publication date: October 2025.

https://doi.org/10.1162/NECO.1989.1.4.541
http://arxiv.org/abs/1910.05316
https://doi.org/10.1109/ICCV48922.2021.00773
https://proceedings.neurips.cc/paper/2020/hash/86c51678350f656dcc7f490a43946ee5-Abstract.html
https://doi.org/10.1016/J.COMPELECENG.2021.107121
https://doi.org/10.1145/3609118
https://doi.org/10.1145/3588591
https://openreview.net/forum?id=rJzIBfZAb
https://doi.org/10.1145/3498704
https://arxiv.org/abs/2106.08295
http://proceedings.mlr.press/v97/pang19a.html
https://doi.org/10.1145/3377811.3380337
https://doi.org/10.1145/3324884.3416560
https://doi.org/10.1007/978-3-031-50521-8_5
https://doi.org/10.1109/TAC.2023.3283213
https://proceedings.mlsys.org/paper_files/paper/2024/hash/dea9b4b6f55ae611c54065d6fc750755-Abstract-Conference.html
https://proceedings.mlsys.org/paper_files/paper/2024/hash/dea9b4b6f55ae611c54065d6fc750755-Abstract-Conference.html
https://doi.org/10.1145/3290354
https://openreview.net/forum?id=HJgeEh09KQ
http://arxiv.org/abs/1709.03423
http://proceedings.mlr.press/v97/tan19a.html
https://openreview.net/forum?id=HyGIdiRqtm
https://doi.org/10.1145/3591299
https://doi.org/10.1145/3527319
https://doi.org/10.1145/3428253
https://doi.org/10.1007/978-3-030-39415-8
https://proceedings.neurips.cc/paper/2018/hash/335d3d1cd7ef05ec77714a215134914c-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/335d3d1cd7ef05ec77714a215134914c-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/fac7fead96dafceaf80c1daffeae82a4-Abstract.html

340:28 Anan Kabaha and Dana Drachsler Cohen

Zhilu Wang, Chao Huang, and Qi Zhu. 2022a. Efficient Global Robustness Certification of Neural Networks via Interleaving

Twin-Network Encoding. In DATE 2022 (2022). doi:10.24963/IJCAI.2023/727
Zhilu Wang, Yixuan Wang, Feisi Fu, Ruochen Jiao, Chao Huang, Wenchao Li, and Qi Zhu. 2022b. A Tool for Neural Network

Global Robustness Certification and Training. In https://doi.org/10.48550/arXiv.2208.07289 2022 (2022). doi:10.48550/

ARXIV.2208.07289

Yuchen Yang, Shubham Ugare, Yifan Zhao, Gagandeep Singh, and Sasa Misailovic. 2024. ARQ: A Mixed-Precision Quantiza-

tion Framework for Accurate and Certifiably Robust DNNs. In abs/2410.24214 (2024). doi:10.48550/ARXIV.2410.24214
Zhewei Yao, Xiaoxia Wu, Cheng Li, Stephen Youn, and Yuxiong He. 2024. Exploring Post-training Quantization in LLMs

from Comprehensive Study to Low Rank Compensation. In AAAI (2024). doi:10.1609/AAAI.V38I17.29908
I-Cheng Yeh. 2016. Default of credit card clients. UCI Machine Learning Repository. https://doi.org/10.24432/C55S3H

Zhihang Yuan, Jiawei Liu, Jiaxiang Wu, Dawei Yang, Qiang Wu, Guangyu Sun, Wenyu Liu, Xinggang Wang, and Bingzhe

Wu. 2023. Benchmarking the Reliability of Post-training Quantization: a Particular Focus on Worst-case Performance. In
The Second Workshop on New Frontiers in Adversarial Machine Learning (2023). doi:10.48550/ARXIV.2303.13003

Jinjie Zhang, Yixuan Zhou, and Rayan Saab. 2023. Post-training Quantization for Neural Networks with Provable Guarantees.

In SIAM J. Math. Data Sci. (2023). doi:10.1137/22M1511709

Yedi Zhang, Lei Huang, Pengfei Gao, Fu Song, Jun Sun, and Jin Song Dong. 2025. Verification of Bit-Flip Attacks against

Quantized Neural Networks. In OOPSLA1 (2025). doi:10.1145/3720471
Yedi Zhang, Zhe Zhao, Guangke Chen, Fu Song, Min Zhang, Taolue Chen, and Jun Sun. 2022. QVIP: An ILP-based Formal

Verification Approach for Quantized Neural Networks. In ASE (2022). doi:10.1145/3551349.3556916

Xiaotian Zhao, Ruge Xu, and Xinfei Guo. 2023. Post-training Quantization or Quantization-aware Training? That is the

Question. In CSTIC (2023). doi:10.1109/CSTIC58779.2023.10219214

Bohan Zhuang, Chunhua Shen, Mingkui Tan, Lingqiao Liu, and Ian D. Reid. 2018. Towards Effective Low-Bitwidth

Convolutional Neural Networks. In CVPR (2018). doi:10.1109/CVPR.2018.00826

Received 2025-03-26; accepted 2025-08-12

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 340. Publication date: October 2025.

https://doi.org/10.24963/IJCAI.2023/727
https://doi.org/10.48550/ARXIV.2208.07289
https://doi.org/10.48550/ARXIV.2208.07289
https://doi.org/10.48550/ARXIV.2410.24214
https://doi.org/10.1609/AAAI.V38I17.29908
https://doi.org/10.24432/C55S3H
https://doi.org/10.48550/ARXIV.2303.13003
https://doi.org/10.1137/22M1511709
https://doi.org/10.1145/3720471
https://doi.org/10.1145/3551349.3556916
https://doi.org/10.1109/CSTIC58779.2023.10219214
https://doi.org/10.1109/CVPR.2018.00826

	Abstract
	1 Introduction
	2 Background on Quantized Networks
	3 Our Property: Quantization Inconsistent Classifications
	4 Overview on Computing the QEF Bound
	5 CoMPAQt: A System for Guaranteed Classification Consistent Quantization
	5.1 Algorithm for Computing the QEF Bound
	5.2 Correction Mechanisms to Mitigate Classification Inconsistencies

	6 Evaluation
	7 Related Work
	8 Conclusion and Future Work
	References

