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Neural network image classifiers are ubiquitous in many safety-critical applications. However, they are

susceptible to adversarial attacks. To understand their robustness to attacks, many local robustness verifiers

have been proposed to analyze 𝜖-balls of inputs. Yet, existing verifiers introduce a long analysis time or lose

too much precision, making them less effective for a large set of inputs. In this work, we propose a new

approach to local robustness: group local robustness verification. The key idea is to leverage the similarity of the

network computations of certain 𝜖-balls to reduce the overall analysis time. We propose BaVerLy, a sound and
complete verifier that boosts the local robustness verification of a set of 𝜖-balls by dynamically constructing

and verifying mini-batches. BaVerLy adaptively identifies successful mini-batch sizes, accordingly constructs

mini-batches of 𝜖-balls that have similar network computations, and verifies them jointly. If a mini-batch

is verified, all its 𝜖-balls are proven robust. Otherwise, one 𝜖-ball is suspected as not being robust, guiding

the refinement. BaVerLy leverages the analysis results to expedite the analysis of that 𝜖-ball as well as the

analysis of the mini-batch with the other 𝜖-balls. We evaluate BaVerLy on fully connected and convolutional

networks for MNIST and CIFAR-10. Results show that BaVerLy scales the common one by one verification by

2.3x on average and up to 4.1x, in which case it reduces the total analysis time from 24 hours to 6 hours.
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its engineering→ Formal methods; • Computing methodologies→ Neural networks.
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1 Introduction
Neural networks are successful in many applications, including object detection, speech recognition,

text generation and machine translation [Bahdanau et al. 2015; Graves and Jaitly 2014; Redmon et al.

2016; Sutskever et al. 2014]. In particular, they are widely ubiquitous as image classifiers [Krizhevsky

et al. 2012], playing a crucial role in safety-critical applications, such as autonomous cars [Ayachi

et al. 2020; Bachute and Subhedar 2021; Bojarski et al. 2016], medical diagnosis [Anthimopoulos

et al. 2016; Esteva et al. 2017], and surveillance systems [Javed and Shah 2002; Zahrawi and Shaalan

2023]. Guaranteeing the safety of these networks is imperative in these settings, especially in light

of the recent European Regulations on Artificial Intelligence [European Commission 2020].

However, neural networks are known to be vulnerable to different kinds of attacks. One of the

attacks that has drawn a lot of attention in recent years is adversarial example attacks [Croce and

Hein 2019; Goodfellow et al. 2015; Guo et al. 2019; Ilyas et al. 2018; Karim et al. 2021; Szegedy

et al. 2013; Yuan et al. 2019]. An adversarial attack that targets an image classifier computes a

small noise – typically imperceptible to the human eye – that leads the network to misclassify. To
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show the robustness of a neural network to these attacks, many robustness verifiers have been

introduced [Ferrari et al. 2022; Gehr et al. 2018; Katz et al. 2017, 2019; Lopez et al. 2023; Mohapatra

et al. 2020; Singh et al. 2018, 2019a; Tjeng et al. 2019; Wang et al. 2021]. Most of them focus on

proving the local robustness of a given 𝐿∞ 𝜖-ball [Singh et al. 2018, 2019a; Tjeng et al. 2019;Wang et al.

2021], though some of them focus on other kinds of perturbations, such as other 𝐿𝑝 𝜖-balls [Huang

et al. 2021; Shapira et al. 2023, 2024], geometric perturbations [Balunovic et al. 2019; Wang et al.

2023], or global robustness [Kabaha and Drachsler-Cohen 2024; Leino et al. 2021].

Despite the immense research on verifiers for determining the local robustness in a single 𝜖-ball,

they still face challenges in providing formal guarantees to deep networks: complete verifiers

struggle to scale because of their exponential time complexity, while incomplete verifiers struggle

to successfully verify robustness of deep networks because of their precision loss. Additionally,

typically network designers are not interested in the local robustness of a single 𝜖-ball. Ideally,

they aim at understanding the local robustness in all “relevant” 𝜖-balls. Since the set of relevant

𝜖-balls does not have a formal characterization, it is often estimated as the set of 𝜖-balls around

inputs in a given test set. Although these sets often contain similar inputs, most local robustness

verifiers do not leverage this setting and verify 𝜖-balls one by one. An exception is works on shared

certificates [Fischer et al. 2022; Ugare et al. 2022], which learn verification templates with the goal

of expediting the analysis of unseen 𝜖-balls. However, they are not designed to directly leverage

the given test set to reduce the overall analysis time. Additionally, the template generation takes

several hours and existing shared certification techniques focus on incomplete verification, and

consequently they may not expose the true robustness level of a network.

In this work, we consider the problem of group local robustness verification. Given a network, a set

of inputs, and a real number 𝜖 , the goal is to determine for every input’s 𝜖-ball whether it is robust

or not while minimizing the overall analysis time. We focus on complete verification, because

it enables to understand the robustness level of the network. In particular, it provides a faithful

approach to compare the robustness levels of two networks. This problem is challenging since it

requires to identify which 𝜖-balls can be analyzed together without leading to spurious adversarial

examples and without increasing the verification’s complexity. The latter may happen since the

verification’s complexity is exponential in the number of non-stable neurons (i.e., neurons for which

the activation function exhibits nonlinearity). Generally, unifying 𝜖-balls may lead to increasing

the number of non-stable neurons. In particular, unwise unification may lead to a significantly

higher number of non-stable neurons, thus increasing the verification’s complexity and making

the overall analysis time longer than analyzing the 𝜖-balls one by one.

To balance between verifying multiple 𝜖-balls and avoiding increased complexity as well as

precision loss, we propose to verify mini-batches. A mini-batch is a small subset of inputs for which

the network performs similar computations. This concept is inspired by common machine learning

training algorithms, which process data in mini-batches to significantly enhance computational

efficiency (though their mini-batches need not consist of inputs with similar network computations).

Verifying a mini-batch can be encoded by a mixed-integer linear program (MILP), extending the

encoding of a previous local robustness verifier for a single 𝜖-ball [Tjeng et al. 2019]. However, the

naive extension suffers from higher verification’s complexity as well as precision loss. To cope, we

propose several ideas. First, we begin the joint verification of a mini-batch in an intermediate layer

of the network (like the generated templates of Fischer et al. [2022]; Ugare et al. [2022]). Unifying in

an intermediate layer enables to focus on the computations where the 𝜖-balls are perceived similar,
thereby the verification’s complexity does not grow significantly and the overapproximation error

is low. Second, we encode the mini-batch verification such that the MILP solver either determines

that the mini-batch is fully verified, or detects an 𝜖-ball which may be not robust. This encoding

enables a simple refinement: this 𝜖-ball is analyzed separately and the other 𝜖-balls continue their
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joint analysis. Thus, the time spent on the analysis of a mini-batch is not wasted. Further, after

separating the possibly non-robust 𝜖-ball from the mini-batch, its analysis and the analysis of

the remaining batch leverage the analysis results of the previous mini-batch to terminate faster.

Third, we estimate the similarity of 𝜖-balls by the activation patterns of their center input. This

approach is both fast and, in practice, estimates well closeness of 𝜖-balls. Fourth, we learn the

optimal mini-batch size throughout the analysis. In particular, it may start with larger mini-batches,

consisting of the most similar 𝜖-balls and reduce the mini-batch sizes, when the remaining 𝜖-balls

are further apart. This step relies on multi-armed bandit with the Thompson Sampling.

We implemented our approach in a system called BaVerLy (a batch verifer for local robustness).
We evaluate BaVerLy on fully connected networks and convolutional networks for MNIST and

CIFAR-10. BaVerLy boosts the verification time by 2.3x on average and up to 4.1x compared to one

by one verification. In particular, it reduces the analysis time from 13 hours to 5 hours, on average.

We further show that learning the optimal mini-batch size boosts BaVerLy by 2.5x.

2 Problem Definition
In this section, we define our problem: group robustness verification. We begin with background on

image classifiers and local robustness. We then define our problem and discuss existing approaches.

Image classifiers. Image classifiers take an input image 𝑥 and determine which class from a set

of classes C describes the object shown in the image. For example, a CIFAR-10 classifier maps

images to one of ten classes, e.g., a ship or a deer. An image classifier implemented by a deep neural

network (DNN) is a function 𝑁 : [0, 1]𝑑𝑖𝑛 → R𝑑𝑜𝑢𝑡
composed from 𝐿 hidden layers 𝑁 = 𝑁𝐿 ◦ . . .◦𝑁1.

The input to the first hidden layer, referred to as the input layer, is denoted by 𝑧0 = 𝑥 ∈ [0, 1]𝑑𝑖𝑛 ,
while the output of the last hidden layer, known as the output layer, is denoted by 𝑧𝐿 ∈ R𝑑𝑜𝑢𝑡

.

Each hidden layer 𝑁𝑖 takes as input the output vector of the previous layer 𝑧𝑖−1 and returns a

vector 𝑧𝑖 . To compute the output vector, it first executes an affine transformation 𝑧′𝑖 =𝑊𝑖𝑧𝑖−1 + 𝑏𝑖 ,
where𝑊𝑖 and 𝑏𝑖 are the layer’s weight matrix and bias vector, respectively. This transformation is

then followed by a nonlinear activation function. We focus on piecewise-linear networks, whose

predominant activation function is the Rectified Linear Unit (ReLU). The ReLU function, computing

𝑧𝑖 = 𝑅𝑒𝐿𝑈 (𝑧′𝑖 ), is invoked component-wise and returns the maximum of each component and zero:

∀𝑗 . (𝑧𝑖 ) 𝑗 = 𝑅𝑒𝐿𝑈 ((𝑧′𝑖 ) 𝑗 ) = max((𝑧′𝑖 ) 𝑗 , 0). The output of the last layer 𝑁𝐿 contains 𝑑𝑜𝑢𝑡 neurons,

each returns the score of a unique class 𝑐 ∈ C (where |C| = 𝑑𝑜𝑢𝑡 ). The process of passing an input

𝑥 ∈ [0, 1]𝑑𝑖𝑛 through the DNN to receiving the output 𝑁 (𝑥) ∈ R𝑑𝑜𝑢𝑡
is called a feed-forward pass. At

the end of this process, the classification for 𝑥 is the class with the highest score: 𝑐′ = argmax(𝑁 (𝑥)).

Local robustness. To prove safety to adversarial attacks, many works focus on analyzing the local
robustness of a network classifier [Gehr et al. 2018; Katz et al. 2017; Lopez et al. 2023; Müller et al.

2021; Singh et al. 2019a; Tjeng et al. 2019; Tran et al. 2020; Wu et al. 2024; Zhou et al. 2024]. The vast

majority of works focuses on proving robustness in the 𝐿∞ 𝜖-ball of a given input. Formally, given an

input image 𝑥 ∈ R𝑑𝑖𝑛
and an 𝜖 ∈ R+

, the 𝐿∞ 𝜖-ball of 𝑥 is the set of all inputs that differ from 𝑥 by at

most 𝜖 , that is 𝐵∞𝜖 (𝑥) = {𝑥 ′ | ∥𝑥 −𝑥 ′∥∞ = max( |𝑥1 −𝑥 ′1 |, . . . , |𝑥𝑑𝑖𝑛 −𝑥 ′𝑑𝑖𝑛 |) ≤ 𝜖}. A network classifier

𝑁 is locally robust in 𝐵∞𝜖 (𝑥) if it classifies all its inputs the same: ∀𝑥 ′ ∈ 𝐵∞𝜖 (𝑥), argmax(𝑁 (𝑥)) =
argmax(𝑁 (𝑥 ′)). In the following, we say that 𝑁 is robust in the 𝜖-ball (or the neighborhood) of 𝑥

if 𝑁 is locally robust in 𝐵∞𝜖 (𝑥). Local robustness has been shown to be NP-hard [Katz et al. 2017],

which stems from the nonlinear activation function’s computations (e.g., the ReLUs). Thus, existing

local robustness verifiers balance between their precision and scalability. This gave rise to two

approaches: complete and incomplete verifiers. Complete verifiers guarantee to determine whether

an 𝜖-ball is robust but suffer from a long runtime, which increases as the network is deeper (i.e., has
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more layers). In contrast, incomplete verifiers favor scalability and overapproximate the activation

computations to expedite the analysis at the expense of precision loss, i.e., the verifier may fail to

prove robustness for some robust 𝜖-balls. Commonly, the deeper the network or the larger the 𝜖 ,

the higher the precision loss, and thus the higher failure rate of incomplete verifiers.

Group local robustness. While many complete verifiers propose ways to scale their analysis, they

still struggle to scale. In this work, we aim to leverage the practical scenario of local robustness:

verifying local robustness of a set of 𝜖-balls. While, ideally, a network designer wishes to understand

the local robustness in every input’s 𝜖-ball (called global robustness), this is much more challenging

and existing global robustness verifiers do not scale to the size of networks that local robustness

verifiers scale. Instead, it is common to “estimate” the global robustness of the network by evaluating

its local robustness in the 𝜖-balls of a set of inputs. While there is no guarantee that the network is

locally robust in unseen 𝜖-balls, this approach helps designers compare the robustness of networks

to adversarial attacks. We next formally define this problem and discuss existing approaches.

Definition 2.1 (Group Local Robustness Verification). Given a set of inputs 𝑆 ⊆ [0, 1]𝑑𝑖𝑛 , a classifier
𝑁 : [0, 1]𝑑𝑖𝑛 → R𝑑𝑜𝑢𝑡

, and 𝜖 ∈ R+
, group local robustness verification determines for every input

𝑥 ∈ 𝑆 whether 𝑁 is locally robust in its 𝜖-ball 𝐵∞𝜖 (𝑥) while minimizing the overall analysis time.

Existing approaches. The most common approach to addressing our problem involves designing a

verifier that analyzes the local robustness of an 𝜖-ball around an input and invoke it on every input in

𝑆 one by one. However, this approach does not leverage the similarity of the network computations,

which leads to a long analysis time. To mitigate this, several studies have proposed reusing analysis

computations. For instance, Ugare et al. [2022] generate and transform templates that capture

symbolic shapes at intermediate network layers, allowing proof computations to be reused across

multiple approximate versions of a network. However, this technique is tailored for proof transfer

across similar networks rather than across different inputs. Fischer et al. [2022] propose the concept

of shared certificates, which leverages the proofs of certain 𝜖-balls to speed up the verification of

other 𝜖-balls, through a two-step process: offline template generation and inference. During the

template generation, a large set of 𝜖-balls of training inputs (e.g., several thousands [Fischer et al.

2023]) are verified one by one. The intermediate analysis results (e.g., zonotopes or polyhedrons)

are attempted to be generalized to templates through clustering, convex-hull extension, and other

expansion techniques. These templates, encoded in the box or the star domain [Bak and Duggirala

2017; Tran et al. 2019], are subsequently verified using an exact verifier. At inference, an 𝜖-ball

begins the analysis and after every layer in which templates were generated, it is checked whether

its analysis result is contained in one of the templates. If yes, the analysis terminates; otherwise,

the analysis continues as usual. While shared certificates have been shown successful, they are

coupled to the chosen abstract domain, which limits them to incomplete verification. Consequently,

the network designer may not understand the actual local robustness in the given set of 𝜖-balls,

which can lead to incorrect conclusion when comparing the robustness of networks to one another.

Additionally, the training time has high overhead (multiple hours). Further, the training procedure

is invoked once and does not consider the 𝜖-balls that are later analyzed. In all existing approaches,

the local robustness analysis is performed 𝜖-ball by 𝜖-ball, as illustrated in Figure 1. While shared

certification analysis aims at reducing the joint analysis time, it assumes that future unseen 𝜖-balls

have similar intermediate analysis results as the 𝜖-balls of the inputs in the training set.

3 Overview: Mini-Batch Complete Verification
In this section, we describe our approach to group local robustness verification: dynamically

identifying small subsets of inputs – called mini-batches – whose 𝜖-balls are likely to be successfully
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Fig. 1. Existing approaches analyze local robustness for each input’s 𝜖-ball separately. Complete verifiers
determine for each 𝜖-ball whether it is robust or not robust. Incomplete verifiers may also return unknown.

(a) Histogram of 𝐿∞ distance of MNIST closest pairs.
(b) CIFAR-10’s first 8 car images (top) and the first 8
images after sorting by SSIM (bottom).

verified together. At high-level, our verification relies on an abstraction-refinement procedure,

similarly to Ostrovsky et al. [2022]; Singh et al. [2019b]; Wang et al. [2018a,b]. However, to minimize

the analysis time, there are several inherent questions to address: (1) what computations are

abstracted given a mini-batch, (2) how to identify how many and which inputs to include in mini-

batches and (3) how to perform refinement. We next discuss our ideas to address these questions.

3.1 Abstraction
Given a set of inputs 𝑆 , the most naive approach abstracts all their 𝜖-balls. However, it is very likely

to fail proving robustness, especially if the inputs are classified differently or if the inputs are not

very close to one another. This is caused by two reasons. First, existing local robustness verifiers

determine robustness by checking that all inputs in the given neighborhood are classified the same,

thus abstracting inputs of different classes will lead the verifier to determine that the abstracted

neighborhood is not robust. Second, the more different the inputs, the higher the overapproximation

error and the more likely it contains spurious counterexamples, which will lead to failure.

A more natural approach abstracts the 𝜖-balls of inputs that are classified the same and are

close, based on some similarity metric. A natural candidate for similarity metric is the 𝐿∞ distance.

However, even for the MNIST dataset, whose images are relatively similar, the images are not close

enough to keep the overapproximation low. Figure 2a shows a histogram of the 𝐿∞ distance of every

MNIST test image and its closest image. It shows that the closest pair has distance of 0.33 (typically,

the radius of the 𝜖-ball is much smaller), and that most pairs have significantly larger distance.

For images, a better similarity metric is the structural similarity (SSIM) index [Wang et al. 2004]

(illustrated in Figure 2b) or LPIPS [Zhang et al. 2018]. In Section 5, we show that abstracting in the

input layer based on these metrics leads to a large analysis time and fails proving robustness for

most 𝜖-balls. The reason is that despite the similarity, the abstraction still adds too many spurious

inputs, which increases the analysis time at best and leads to spurious counterexamples at worst.

Instead, we rely on the following observation: given inputs classified to the same class, abstracting

in a deeper layer loses less precision. Intuitively, the reason is that the output vectors of such inputs
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Fig. 3. Our approach for complete group local robustness verification forms mini-batches and analyzes them
jointly starting from an intermediate layer. If a mini-batch fails, our verifier identifies a potentially non-robust
𝜖-ball and analyzes it separately. It then continues the analysis for the remaining 𝜖-balls in the mini-batch.

tend to become closer for deeper layers, where ultimately the last output vectors are equivalent

in terms of the chosen classification. This observation is supported theoretically: the information
bottleneck principle in deep learning [Tishby and Zaslavsky 2015] states that neural networks

compress the input to enhance generalization. That is, the input layer has a raw representation

of the input 𝑥 , where not all pixels contribute to its classification. As the input is propagated

through the network, each layer processes the representation of the previous layer, extracting

the meaningful information while discarding irrelevant details. Thus, by abstracting 𝜖-balls in an

intermediate layer, we can focus on the network computations where they are perceived similar,
which is more effective to expedite the analysis. Inspired by this observation, we join the analysis

of the batch’s 𝜖-balls in an intermediate layer ℓ . This observation has also been leveraged in shared

certificates [Fischer et al. 2022], which are formed by templates in an intermediate layer. Unlike

shared certificates, we do not compute templates with the goal of expediting the analysis of future

unseen 𝜖-balls, but batch the analysis of subsets of 𝜖-balls. Figure 3 illustrates our approach, called

BaVerLy. Given a network, a set of inputs and an 𝜖 , it iteratively forms batches (we explain how

shortly). For each batch, it verifies each 𝜖-ball separately up to layer ℓ (the choice of ℓ is described

in Section 4.5). It then continues their analysis together. If the analysis succeeds, all 𝜖-balls of the

batch are proven robust. If not, BaVerLy identifies an 𝜖-ball that may be not robust (we explain

how later). It then analyzes this 𝜖-ball separately and continues the joint analysis for the remaining

batch. We explain later in this section why our refinement steps lead to very low overhead.

3.2 Mini-Batches
Our second observation is that to balance well the precision-scalability trade-off, it is best to

abstract to mini-batches. That is, unify the verification of relatively small subsets of 𝜖-balls. While

our algorithm works for any batch size, large batches increase the time overhead substantially
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because of their overapproximation error. Beyond balancing well the precision-scalability trade-off,

there is an additional advantage in verifying mini-batches when the set of inputs 𝑆 is large: it enables

BaVerLy to learn the best mini-batch size based on previous mini-batches. This is possible because

the group verification problem is invariant to the order in which 𝜖-balls are verified. Naturally, the

best batch size depends on the inputs in the batch, thus our batches consist of inputs whose 𝜖-balls

have similar network computations. We next describe how BaVerLy learns the best batch size from

previous mini-batches and how it clusters inputs into a mini-batch of a selected size.

Learning the mini-batch size. Choosing a good batch size is challenging. On the one hand, too

large mini-batches can substantially increase the analysis time due to the overapproximation error.

On the other hand, too small batches may also increase the analysis time, similarly to verifying the

𝜖-balls one by one. The best batch size also depends on the inputs in 𝑆 : the more similar inputs

in 𝑆 , the more effective larger mini-batches are. Even if BaVerLy begins by grouping the most

similar 𝜖-balls to relatively large mini-batches, as the analysis progresses, the remaining 𝜖-balls

are likely to have more distant network computations, for which smaller mini-batches are more

effective. We rely on an adaptive approach to learn the optimal batch size on the fly. Our approach

adopts a strategy from reinforcement learning (RL), where an agent learns a policy that maximizes

the received reward. In our setting, the optimal policy’s goal is to predict batch sizes that enable

BaVerLy to minimize the analysis time per input in 𝑆 . We formalize this goal as increasing the

batch velocity, that is the number of 𝜖-balls which were proven robust within the batch verification,

divided by the analysis time of the batch (excluding its refinements). We note that the concept of

partitioning a local robustness task by predicting the subparts that maximize the proof velocity has

been proposed by others [Kabaha and Drachsler-Cohen 2022], however they focus on verifying the

local robustness of a single semantic feature neighborhood. An inherent dilemma of an RL agent

is the exploration-exploitation trade-off. In our context, this means that whenever our RL agent

chooses a mini-batch size it can choose between exploring new, potentially effective mini-batch

sizes (which may be discovered as less effective) or exploiting batch sizes that have been shown

to be reasonably effective (which may lead to not discovering more effective batch sizes). In our

setting, this problem becomes even more challenging since the 𝜖-balls can vary in the location of

their perturbations and in the similarity level of their network computations. To cope, we frame

the problem of predicting the best mini-batch size as a multi-armed bandit (MAB) scenario and

rely on the Thompson Sampling [Thompson 1933] that seamlessly balances reward maximization

(exploitation) and variance minimization (exploration). Technically, we introduce a different arm

for each batch size. For each batch size, we learn a distribution that converges to the velocity of

batches with this size. The distributions are updated throughout the execution of BaVerLy. Figure 4
illustrates our approach for learning the best batch size.

Constructing effective mini-batches. The next question is how to construct a mini-batch, given

the selected size 𝑘 . As mentioned, BaVerLy aims at grouping the 𝑘 inputs whose 𝜖-balls exhibit

the most similar network computations. This raises two questions: (1) how to identify the 𝜖-balls

with the closest network computations and (2) how to identify 𝑘 such 𝜖-balls? The first question is

particularly challenging since BaVerLy does not know what the network computations of a given

𝜖-ball are without performing its analysis. Obviously, if BaVerLy performed the analysis of every

𝜖-ball separately, there would be no point in the mini-batch analysis. Instead, we estimate the

closeness of two 𝜖-balls by the similarity of the network computations for their center inputs. This

is obtained by first running every input in 𝑆 through the network, which introduces negligible

overhead. We then abstract the network computation of every input by its activation pattern. An
input 𝑥 ’s activation pattern is a boolean vector consisting of a bit for every ReLU neuron in the

network. A bit is one if the respective neuron is active (i.e., positive) when propagating 𝑥 through
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Fig. 4. Our approach for learning the best mini-batch size. We phrase the problem as a multi-armed bandit
and learn the velocity distribution of every batch size. At every iteration, BaVerLy samples the mini-batch
size by the Thompson Sampling. It then constructs a mini-batch and verifies it. Afterward, the batch velocity
is computed and the respective batch size’s distribution is updated.
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Fig. 5. Given an input, an activation pattern abstracts the computation of the intermediate neurons by a
boolean vector whose 𝑖th entry is one, if the 𝑖th neuron outputs a positive value, and zero otherwise.

the network, and zero otherwise. Figure 5 exemplifies the activation patterns of two inputs. The

advantage of relying on the similarity of activation patterns rather than metrics at the input layer

is that it estimates the increase in the verification’s complexity caused by the unification of 𝜖-balls.

At high-level, the verification’s complexity is exponential in the number of unstable ReLUs. Given

a neighborhood of inputs, the unstable ReLU neurons are the neurons whose weighted sum inputs

can be both positive and negative. Namely, these ReLUs can be both active and inactive, making

the ReLU computation nonlinear in this neighborhood. The fewer the unstable ReLU neurons, the

lower the verification’s complexity. While the activation pattern of an input does not indicate which

neurons are unstable in its 𝜖-ball (since it does not consider every possible input in the 𝜖-ball),

inputs which differ in the activation state of a certain neuron, imply that this neuron must be

unstable if we unify their 𝜖-balls. For example, consider neuron 1 in Figure 5. It is in active state for

the first image and in inactive state for the second image. If we unify these images’ 𝜖-balls into one

neighborhood, neuron 1 must be unstable. On the other hand, for neurons 2 and 6 in Figure 5, both
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images have the same state (for both, neuron 2 is active and neuron 6 is inactive). Thus, although

it may be that these neurons are unstable if we unify these images’ 𝜖-balls, it may also be that

these neurons are stable. We note that if a certain neuron has different active/inactive states for

two images, it does not necessarily mean that if we unify the two images’ 𝜖-balls the verification’s

complexity increases, since it could be that one of their 𝜖-balls makes this neuron unstable. This is

our motivation for preferring to unify 𝜖-balls whose center inputs have close activation patterns.

We measure the distance of two activation patterns by their Hamming distance (i.e., the number of

different bits). For example, the Hamming distance of the two images in Figure 5 is 2, since their

first and third bits are different. Relying on activations to identify network similarities has been

proposed in prior work. For example, Szegedy et al. [2013] show that activation values of neurons

in the hidden layers encode semantic information about the features seen in the image. In particular,

inputs that share many common features tend to have close activation patterns. Krizhevsky et al.

[2012] show that the network perceives images as semantically similar when their deeper layer

activations are proximal, even when the images’ pixels differ substantially.

We now explain how BaVerLy forms a mini-batch of up to 𝑘 inputs. A natural idea is to rely on

clustering algorithms, such as K-Means [MacQueen 1967]. However, most clustering algorithms

are effective in clustering a set of elements into a certain number of clusters, whereas we are

interested in clusters of given sizes and the given sizes change during the execution of BaVerLy.
We thus rely on Hierarchical Clustering (H-Cluster) [Ward 1963]. H-Cluster has been proposed

in phylogenetics for revealing the evolutionary ancestry between a set of genes, species, or taxa.

Given a set of vectors, the H-Cluster greedily constructs a diagrammatic representation of the

clusters hierarchy, called a dendrogram. Figure 6a shows an example of a dendrogram over six

activation patterns, where the number of an internal node is the maximum Hamming distance of

the activation patterns in its subtree. For example, the Hamming distance between 𝑥3 and 𝑥4 is 420

and the distance between 𝑥5 and 𝑥6 is 477. The largest Hamming distance between every pair of

inputs in {𝑥3, 𝑥4, 𝑥5, 𝑥6} is 595. BaVerLy transforms the dendrogram into a binary tree. Every leaf

corresponds to an input 𝑥 ∈ 𝑆 and inner nodes represent clusters consisting of all leaves in their

subtrees. Figure 6b shows an example of this binary tree, where the numbers in the inner nodes are

the size of their cluster. This binary tree enables BaVerLy to efficiently track the remaining inputs

to verify and construct batches of given sizes. To construct a batch of size up to 𝑘 , it traverses

the tree in pre-order, stopping at the first node whose number is less than or equal to 𝑘 . Then, it

forms the batch by collecting the leaves and removes this subtree. The search time complexity is

𝑂 (log |𝑆 |) on average and 𝑂 ( |𝑆 |) in the worst case (since the binary tree can be unbalanced).

Refinement. We next discuss what BaVerLy does if the verification of a mini-batch finds a

counterexample. We remind that our mini-batch verification analyzes every 𝜖-ball of the mini-

batch separately until some layer ℓ and then analyzes the 𝜖-balls jointly till the output layer. A

straightforward encoding of a mini-batch abstracts the 𝜖-balls’ outputs at layer ℓ into the bounding

box containing all these outputs. However, this increases the input space of layer ℓ + 1 significantly,

possibly including spurious adversarial examples, which will fail the verification. Even if the

verifier finds a true adversarial example, it can require time to determine this is the case. Instead, we

propose to encode the union of the 𝜖-balls’ outputs at layer ℓ . Technically, we defineMILP constraints

capturing a disjunction that restricts the inputs to layer ℓ +1 to exactly the 𝜖-balls’ outputs at layer ℓ .
Our constraints associate a binary variable for each 𝜖-ball of the batch. If an adversarial example

is found, one of these binary variables is one, indicating that the adversarial example belongs to

the respective 𝜖-ball. Because the mini-batch analysis begins from an intermediate layer (and not

the first layer), this adversarial example may be spurious. Thus, BaVerLy excludes the 𝜖-ball that
may not be robust and analyzes it separately from the first layer to the last one. Accordingly, it
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Fig. 6. Illustration of the H-Cluster algorithm.

determines whether it is robust or not. Then, BaVerLy continues the analysis for the remaining

mini-batch. An advantage of our refinement step is that neither the analysis of the 𝜖-ball that

may not be robust nor the analysis of the remaining mini-batch begin from scratch. Both use the

previous analysis computations to prune their search space. These two ideas enable our refinement

step to introduce very low overhead.

4 BaVerLy: A Batch Verifier for Local Robustness
In this section, we present our group local robustness verifier. We describe its algorithm and then

its components. Appendix A provides a running example.

4.1 BaVerLy’s Algorithm
BaVerLy takes a network classifier 𝑁 , a set of inputs 𝑆 , a class 𝑐 , and an 𝜖 . It returns a dictionary

is_robust mapping every input in 𝑥 ∈ 𝑆 to Robust, if 𝑁 classifies all inputs in the 𝜖-ball 𝐵∞𝜖 (𝑥)
as 𝑐 , or to Non-Robust otherwise. It begins by passing each 𝑥 ∈ 𝑆 through 𝑁 (Lines 3–4). If 𝑥 is

not classified as 𝑐 by 𝑁 , BaVerLy tags it as Non-Robust and removes it from 𝑆 . Then, BaVerLy
chooses the split layer ℓ by calling learnSplitLayer (Line 5), defined in Section 4.5. At high-level,

learnSplitLayer verifies 𝐿 − 1 𝜖-balls of random inputs from 𝑆 , where each verification splits at a

different layer. Accordingly, it chooses for ℓ the layer with the minimal verification time. It removes

the analyzed inputs from 𝑆 and records their status in is_robust. Then, BaVerLy computes the

activation patterns (defined in Section 4.3) for every input in 𝑆 and adds it to a dictionary AP (Line 6).
Then, it constructs the clusters’ dendrogram and its binary tree T (Line 7), described in Section 4.3,

storing the unhandled inputs. It then initializes the multi-armed bandit agentMAB (Line 8), which

learns the optimal mini-batch size (described in Section 4.4). MAB is initialized with the maximal

mini-batch size MAX_BATCH_SIZE (a hyper-parameter) and other arguments, described later.

Then, the main loop runs while there are inputs in the tree T (Line 9). At each iteration,MAB

recommends a batch size 𝑘 (Line 10). BaVerLy then searches T for a mini-batch 𝐵 of up to size 𝑘 ,

constructs it (Line 11) and updates 𝑘 to be the actual batch size (Line 12). For every input 𝑥 in the

mini-batch, BaVerLy analyzes its 𝜖-ball separately up to layer ℓ (Lines 13–16). This analysis computes

for every 𝐵∞𝜖 (𝑥) and every layer real-valued bounds, using MILPs (described in Section 4.2). The

bounds are stored in a dictionary bounds mapping input to its bounds, i.e., bounds[𝑥] is a list of
lists, where the 𝑖th list contains the bounds of the neurons in layer 𝑁𝑖 .
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Algorithm 1: BaVerLy (𝑁 , 𝑆 , 𝑐 , 𝜖)

Input: A neural network 𝑁 , a set of inputs 𝑆 , a class 𝑐 , and an epsilon 𝜖 ≥ 0.

Output: A dictionary is_robust, reporting Robust or Non-robust for every 𝑥 ∈ 𝑆 .
1 is_robust = [] // Dictionary mapping inputs to Robust or Non-Robust

2 AP = [] // Dictionary mapping inputs to activation patterns

3 for 𝑥 ∈ 𝑆 do
4 if argmax𝑁 (𝑥) ≠ 𝑐 then is_robust[𝑥] = Non-Robust; 𝑆 = 𝑆 \ {𝑥}
5 ℓ , 𝑆 , is_robust = learnSplitLayer(𝑁 , 𝑆 , 𝑐 , 𝜖 , is_robust)

6 for 𝑥 ∈ 𝑆 do AP[𝑥] = activatation_pattern(𝑁 , 𝑥 )

7 T = getBinaryTree(H-Cluster(AP))

8 MAB = initialize(MAX_BATCH_SIZE, 𝜌 , BUCKET_SIZE)

9 while T ≠ ⊥ do
10 𝑘 = MAB.getMiniBatchSize()

11 𝐵 = constructBatch(T, 𝑘)

12 𝑘 = |𝐵 | // Actual batch size

13 bounds = [] // Dictionary mapping inputs to theirs bounds up to 𝑁ℓ

14 start_time = current_time()
15 for 𝑥 ∈ 𝐵 do // Compute bounds up to 𝑁ℓ for each input
16 bounds[𝑥] = MILPBounds(𝑁ℓ ◦ . . . ◦ 𝑁1, 𝑥 , 𝜖)

17 MILP_SUF = MILPBatch(𝑁𝐿 ◦ . . . ◦ 𝑁ℓ+1, {bounds[𝑥] [ℓ] | 𝑥 ∈ 𝐵}, 𝑐)
18 cex = MILPSolve(MILP_SUF) // Verify the batch

19 total_time = current_time() − start_time

20 while cex ≠ ⊥ do
21 Let 𝑥 be the input whose variable 𝐼𝑥 is 1 in cex // 𝐵∞𝜖 (𝑥) may be non-robust

22 cex = MIPVerify(𝑁 , 𝑥 , 𝜖 , bounds[𝑥]) // Verify 𝐵∞𝜖 (𝑥)
23 is_robust[𝑥]= cex == ⊥? Robust : Non-Robust
24 𝐵 = 𝐵 \ {𝑥} // Update the batch

25 if 𝐵 == ∅ then break

26 start_time = current_time()
27 MILP_SUF = MILP_SUF :: {𝐼𝑥 = 0} // Ignore the 𝜖-ball of 𝑥

28 cex = MILPSolve(MILP_SUF) // continue with the rest

29 total_time = total_time + (current_time() − start_time)
30 for 𝑥 ∈ 𝐵 do is_robust[𝑥]= Robust // All 𝜖-balls are robust

31 MAB[𝑘].updateDistribution( |𝐵 |
total_time

) // Update based on the velocity

32 return is_robust

Next, BaVerLy verifies the mini-batch. It begins by encoding the mini-batch verification problem

over all inputs in 𝐵 from layer 𝑁ℓ+1 to the output layer (Line 17), where the input space to layer

𝑁ℓ+1 is the union of the bounds of layer 𝑁ℓ over all inputs. We describe the encoding in Section 4.2.

At high-level, it consists of constraints such that if they are satisfiable, there is a vector 𝑣 , which is

not classified as 𝑐 , contained within the bounds of 𝑁ℓ of some input 𝑥 ∈ 𝐵. This vector is possibly
an indication to an adversarial example within 𝐵∞𝜖 (𝑥). This is the case if there is 𝑥 ′ ∈ 𝐵∞𝜖 (𝑥) such
that 𝑣 is the output of layer 𝑁ℓ for 𝑥

′
, i.e., 𝑣 = 𝑁ℓ ◦ . . . ◦ 𝑁1 (𝑥 ′). Because the bounds provide an
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overapproximation, it can happen that there is no such 𝑥 ′ in 𝐵∞𝜖 (𝑥). Our encoding of the union

relies on a binary variable 𝐼𝑥 , for each 𝑥 ∈ 𝐵, and on constraints that guarantee that if the MILP is

satisfiable, exactly one 𝐼𝑥 is equal to 1. If 𝐼𝑥 = 1 for 𝑥 ∈ 𝐵, then the satisfying assignment includes a

vector 𝑣 within the bounds of 𝑁ℓ for 𝐵
∞
𝜖 (𝑥) that is not classified as 𝑐 . This union encoding enables

BaVerLy to not lose precision at the layer 𝑁ℓ and identify which input from 𝐵 may be non-robust.

Our MILP encoding is submitted to a solver, which returns an assignment cex or ⊥ (Line 18).

If the MILP solver finds an assignment cex, BaVerLy begins a loop to refine the batch while there

exists a counterexample (Line 20). At each iteration, it first identifies the input 𝑥 whose bounds

contain the counterexample 𝑣 (Line 21), i.e., the input 𝑥 whose binary 𝐼𝑥 is equal to one. Then, it

verifies the local robustness of 𝑁 in 𝑥 ’s 𝜖-ball separately (Line 22). This analysis is identical to

MIPVerify [Tjeng et al. 2019], on which our MILP encoding builds, except that BaVerLy leverages

the prior analysis and provides it with the bounds for all layers up to ℓ to expedite the analysis

(explained in Section 4.2). This analysis is complete, and thus BaVerLy concludes whether 𝑁 is

robust in 𝑥 ’s 𝜖-ball, depending on whether the MILP solver finds a counterexample (Line 23). Then,

BaVerLy removes 𝑥 from the batch 𝐵 (Line 24). If 𝐵 is empty, it breaks from the inner loop (Line 25).

Otherwise, BaVerLy updates the MILP to ignore 𝑥 ’s bounds by forcing 𝐼𝑥 = 0 (Line 27) and calls

the solver to check if there is another counterexample (Line 28). Note that this analysis continues

from the point that the solver terminates and does not start from scratch the computation.

The inner loop terminates when there is no counterexample, implying that all inputs in 𝐵 are

robust. Thus, BaVerLy updates their robustness status in is_robust (Line 30). It then updates the

MAB agent with the velocity of this batch (Line 31). The velocity is the number of 𝜖-balls proven

robust as part of the batch (i.e., the size of 𝐵 at the end of the inner loop) divided by the overall

analysis time of the batch. This analysis time is the total time of (1) computing the bounds of all

inputs in the initial 𝐵 up to layer ℓ , (2) computing the bounds of the batch starting from layer ℓ + 1,

and (3) looking for counterexamples in the batch. This time excludes the time to prove robustness

of 𝜖-balls suspected as not robust (Line 22), since they are not proven as part of the batch.

Beyond group verification. While we focus on group local robustness verification, we believe our

approach can expedite the verification of other properties. It is applicable to any safety property

whose input space can be partitioned into subspaces. For example, semantic feature neighbor-

hoods often contain a large set of inputs that cannot be analyzed jointly and are split statically

or dynamically (e.g., [Kabaha and Drachsler-Cohen 2022; Singh et al. 2019a]). For such neighbor-

hoods, BaVerLy can be extended to get as input the subspaces (explicitly or symbolically). Then, it

constructs mini-batches and verifies them as described. If a mini-batch is not robust, our union

encoding (relying on the binary variables 𝐼𝑥 ) enables BaVerLy to identify the subspace that may not

be robust, analyze it separately, and continue verify the rest of the mini-batch. A key advantage of

BaVerLy is that continuing verifying a mini-batch, after removing a subspace (by setting its binary

variable 𝐼𝑥 = 0), completes very fast, since it relies on the analysis of the original mini-batch.

4.2 Batch Local Robustness Verification by Mixed Integer Linear Programming
In this section, we present how we rely on mixed-integer linear programming (MILP) for batch

local robustness verification. BaVerLy relies on three MILPs: for computing bounds on the neurons

in the early layers, for verifying a batch in the subsequent layers and for verifying the robustness of

𝜖-balls suspected as non-robust. Our MILPs rely on a prior encoding of local robustness verification

of a single 𝜖-ball [Tjeng et al. 2019]. We next describe it and our encodings.

MIPVerify. MIPVerify [Tjeng et al. 2019] is a verifier for determining the local robustness of a

neural network using MILP. It takes a network classifier 𝑁 , an input 𝑥 ∈ [0, 1]𝑑𝑖𝑛 and its class 𝑐 ,

and an 𝜖 > 0. It determines whether 𝑁 is robust in the 𝐿∞ 𝜖-ball of 𝑥 or not, in which case it

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 372. Publication date: October 2025.



Mini-Batch Robustness Verification of Deep Neural Networks 372:13

Algorithm 2:MILPBounds(𝑁ℓ ◦ . . . ◦ 𝑁1, 𝑥 , 𝜖)

1 𝑙 = []; 𝑢 = []
2 constraints = {max(0, 𝑥𝑖 − 𝜖) ≤ 𝑧0,𝑖 ≤ min(1, 𝑥𝑖 + 𝜖) | 𝑖 ∈ [𝑑𝑖𝑛]}
3 for 𝑖 = 1; 𝑖 ≤ ℓ ; 𝑖 + + do
4 for𝑚 = 1;𝑚 < 𝑚𝑖 ;𝑚 + + do
5 𝑙𝑖,𝑚 = MILPSolve(min𝑏𝑖,𝑚 +∑𝑚𝑖−1

𝑚′=1𝑤𝑖,𝑚,𝑚′ · 𝑧𝑖−1,𝑚′ subject to constraints)

6 𝑢𝑖,𝑚 = MILPSolve(max𝑏𝑖,𝑚 +∑𝑚𝑖−1
𝑚′=1𝑤𝑖,𝑚,𝑚′ · 𝑧𝑖−1,𝑚′ subject to constraints)

7 constraints = constraints ∪MIPVerify_constraints(𝑁𝑖 , 𝑙𝑖 , 𝑢𝑖 )

8 return (l,u)

returns an adversarial example. MIPVerify is sound and complete. Its complexity is exponential

in the number of unstable ReLU neurons. It can analyze classifiers with fully connected, con-

volutional, and max-pooling layers. We describe its constraints for fully connected layers, but

our implementation supports the other layers. MIPVerify begins by encoding the input layer’s

neurons with variables 𝑧0,1, . . . , 𝑧0,𝑑𝑖𝑛 and enforcing the neighborhood with linear constraints:

∀𝑚 ∈ [𝑑𝑖𝑛] . 𝑧0,𝑚 ≥ max(0, 𝑥𝑚 − 𝜖) ∧ 𝑧0,𝑚 ≤ min(1, 𝑥𝑚 + 𝜖). Then, it constructs the constraints
capturing the network computations layer by layer. For every layer 𝑖 with𝑚𝑖 neurons, it adds𝑚𝑖

linear constraints for capturing the affine computation: 𝑧′𝑖 =𝑊𝑖𝑧𝑖−1 + 𝑏𝑖 . Technically, the vector
𝑧′𝑖 is captured by𝑚𝑖 variables 𝑧

′
𝑖,1,. . . ,𝑧

′
𝑖,𝑚𝑖

. Then, it computes real-valued lower and upper bounds

𝑙𝑖,𝑚, 𝑢𝑖,𝑚 for 𝑧′𝑖,𝑚 via optimization. This is computed by taking the constraints of all layers up to layer

𝑖−1 and for each neuron𝑚 ∈ [𝑚𝑖 ], solving two optimization problems (unless skipped by heuristics),

one with objective 𝑢𝑖,𝑚 = max 𝑧′𝑖,𝑚 and the other one with objective 𝑙𝑖,𝑚 = min 𝑧′𝑖,𝑚 . Then, if 𝑙𝑖,𝑚 ≥ 0,

the neuron is active, i.e., its function is the identity function: 𝑧𝑖,𝑚 = 𝑧′𝑖,𝑚 . Similarly, if 𝑢𝑖,𝑚 ≤ 0, the

neuron is inactive, i.e., its function is the constant 0: 𝑧𝑖,𝑚 = 0. Otherwise, 𝑙𝑖,𝑚 < 0 ∧ 𝑢𝑖,𝑚 > 0, the

neuron is unstable, i.e., its function is piecewise linear and thus it is not expressible as a single linear

constraint. To encode the ReLU computation precisely, MIPVerify introduces a binary variable

𝑎𝑖,𝑚 that captures the two possible states and adds four constraints over 𝑎𝑖,𝑚 , 𝑧
′
𝑖,𝑚 and the bounds

𝑙𝑖,𝑚, 𝑢𝑖,𝑚 . After generating the constraints of all layers (the output layer has no ReLUs but its bounds

are computed), MIPVerify adds an objective function and a constraint whose goal is to find the

minimum adversarial perturbation that is misclassified: min𝑥 ′ ∥𝑥 −𝑥 ′∥∞ s.t. 𝑧𝐿,𝑐 ≤ max𝑐′≠𝑐 𝑧𝐿,𝑐′ ,

where 𝑥 ′ = (𝑧0,1, . . . , 𝑧0,𝑑𝑖𝑛 ) and 𝑥 = (𝑥1, . . . , 𝑥𝑑𝑖𝑛 ). It then submits all constraints to a MILP solver.

If the MILP solver determines that the set of constraints is infeasible, then 𝑁 is robust in this 𝜖-ball.

If it finds a satisfying assignment, the values 𝑧0,1, . . . , 𝑧0,𝑑𝑖𝑛 form an adversarial example.

BaVerLy’s MILPs. BaVerLy relies on this MILP encoding for three tasks: (1) for computing the

bounds up to layer ℓ (Lines 13–16), (2) for batch verification (Line 17, Line 27), and (3) for verifying

the local robustness of an 𝜖-ball suspected as not robust (Line 22). We next describe these MILPs.

Bound computation. Algorithm 2 shows the bound computation for every neuron in the first ℓ

layers of 𝑁 , given the 𝜖-ball of an input 𝑥 . It first adds constraints bounding each input neuron

within its interval, based on 𝑥 and 𝜖 (Line 2). Then, for every layer 𝑖 , it iterates the neurons and,

for each, computes a lower and an upper bound on the affine function (Lines 5–6) by calling

a MILP solver with all current constraints. Afterwards, it adds the layer’s constraints (similar

to Equations (2c) and (2d), but with respect to 𝑙𝑖 , 𝑢𝑖 instead of 𝐿𝑖 ,𝑈𝑖 ) and continues to the next layer.

Batch verification. We next describe how BaVerLy forms a MILP for batch verification over the

layers 𝑁ℓ+1, . . . , 𝑁𝐿 . Given a batch 𝐵 and the bounds of 𝑁ℓ for all inputs in 𝐵, BaVerLy first defines
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the input space of 𝑁ℓ+1 as the union of the outputs of layer 𝑁ℓ . Then, it computes the real-valued

bounds for every layer from 𝑁ℓ+1 to the output layer. Accordingly, it computes the same constraints

as MIPVerify for these layers and adds the same constraint to look for an adversarial example. As in

MIPVerify, if this MILP is infeasible, then there is no adversarial example, implying that all 𝜖-balls
of the inputs in the batch are robust. Otherwise, some 𝜖-ball may be not robust.

We next present our encoding for the inputs to 𝑁ℓ+1, which provides a simple way to identify

the input in the batch whose 𝜖-ball may be non-robust. The input to 𝑁ℓ+1 is the output of layer 𝑁ℓ .

A straightforward encoding is to bound each of its outputs in its minimal containing interval, i.e.,

∀𝑚. 𝑧ℓ,𝑚 ∈ [min({𝑏𝑜𝑢𝑛𝑑𝑠 [𝑥] .𝑙ℓ,𝑚 | 𝑥 ∈ 𝐵}),max({𝑏𝑜𝑢𝑛𝑑𝑠 [𝑥] .𝑢ℓ,𝑚 | 𝑥 ∈ 𝐵})] .
However, this results in a very high overapproximation error and is also difficult to identify a good

refinement if an adversarial example is detected. Instead, we wish to encode a disjunction over the

outputs of 𝑁ℓ , thereby forcing the input to 𝑁ℓ+1 to be contained in one of them:∨
𝑥∈𝐵

∧
𝑚∈[𝑚ℓ ]

(
𝑧ℓ,𝑚 ≥ 𝑏𝑜𝑢𝑛𝑑𝑠 [𝑥] .𝑙ℓ,𝑚 ∧ 𝑧ℓ,𝑚 ≤ 𝑏𝑜𝑢𝑛𝑑𝑠 [𝑥] .𝑢ℓ,𝑚

)
However, disjunctions are not directly expressible in MILPs. Thus, we propose a MILP encoding

adapting the big-M method for expressing the maximum function [Winston 1991]. Our encoding

captures a function that takes a finite set of intervals and outputs a value in one of them. Formally,

given 𝑘 intervals [𝑙1, 𝑢1], . . . , [𝑙𝑘 , 𝑢𝑘 ] such that 𝑙𝑖 ≥ 0 for every 𝑖 ∈ [𝑘], our encoding introduces 𝑘
binary variables 𝐼1, . . . , 𝐼𝑘 ∈ {0, 1} and a real-valued variable 𝑦 for the output that is contained in

one of the intervals. Our constraints force that: (1) exactly one interval is picked (by requiring that

the sum of the binary variables is one) and (2) if 𝐼𝑖 = 1, then 𝑦 ∈ [𝑙𝑖 , 𝑢𝑖 ]. This is encoded by two

types of constraints, each has a copy for each of the 𝑘 intervals. The first type of constraints forces

𝑦 ≥ 𝑙𝑖 in case 𝐼𝑖 = 1. The second type of constraints forces 𝑦 ≤ 𝑢𝑖 in case 𝐼𝑖 = 1. We further denote

the “big-M” as the maximum upper bound 𝑢𝑀 = max(𝑢1, . . . , 𝑢𝑘 ). Our encoding is:

𝑘∑︁
𝑖=1

𝐼𝑖 = 1 (1a)

∀𝑖 ∈ [𝑘] : 𝑦 ≥ 𝑙𝑖 · 𝐼𝑖 (1b)

∀𝑖 ∈ [𝑘] : 𝑦 ≤ 𝑢𝑖 · 𝐼𝑖 + 𝑢𝑀 · (1 − 𝐼𝑖 ) (1c)

Theorem 4.1. Equation (1) is feasible if and only if there exists 𝑦 ∈ [𝑙𝑖 , 𝑢𝑖 ] for some 𝑖 ∈ [𝑘].

Appendix B shows the proof. BaVerLy uses this encoding to bound the output of 𝑁ℓ . It introduces

𝑘 = |𝐵 | binary variables 𝐼1, . . . , 𝐼𝑘 , and then, for each 𝑚 ∈ [𝑚ℓ ], it adds the above constraints

for 𝑦 = 𝑧ℓ,𝑚 and the intervals [𝑏𝑜𝑢𝑛𝑑𝑠 [𝑥] .𝑙ℓ,𝑚, 𝑏𝑜𝑢𝑛𝑑𝑠 [𝑥] .𝑢ℓ,𝑚] for every 𝑥 ∈ 𝐵. It also relies on

real-valued bounds 𝐿𝑖,𝑚 and 𝑈𝑖,𝑚 for all 𝑖 ∈ {ℓ + 1, . . . , 𝐿} and 𝑚 ∈ [𝑚𝑖 ], which are computed

as described before, by solving the optimizations 𝐿𝑖,𝑚 = min 𝑧′𝑖,𝑚 and 𝑈𝑖,𝑚 = max 𝑧′𝑖,𝑚 over all

constraints of layers ℓ, . . . , 𝑖 − 1. Overall, given a batch 𝐵 with 𝑘 inputs and their bounds [𝑙 𝑗
ℓ,𝑚
, 𝑢

𝑗

ℓ,𝑚
]

for every 𝑗 ∈ [𝑘],𝑚 ∈ [𝑚ℓ ], the batch verification is encoded by MILP_SUF:

∀𝑗 ∈ [𝑘] : 𝐼 𝑗 ∈ {0, 1},
𝑘∑︁
𝑗=1

𝐼 𝑗 = 1 (2a)

∀𝑗 ∈ [𝑘],∀𝑚 ∈ [𝑚ℓ ] : 𝑧ℓ,𝑚 ≥ 𝑙 𝑗
ℓ,𝑚

· 𝐼 𝑗 , 𝑧ℓ,𝑚 ≤ 𝑢 𝑗

ℓ,𝑚
· 𝐼 𝑗 + 𝑢𝑀,𝑚 · (1 − 𝐼 𝑗 ) (2b)

∀𝑖 > ℓ,∀𝑚 ∈ [𝑚𝑖 ] : 𝑧′𝑖,𝑚 = 𝑏𝑖,𝑚 +
𝑚𝑖−1∑︁
𝑚′=1

𝑤𝑖,𝑚,𝑚′ · 𝑧𝑖−1,𝑚′ (2c)
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Algorithm 3:MILPBatch(𝑁𝐿 ◦ . . . ◦ 𝑁ℓ , {[𝑙 𝑗ℓ,𝑚, 𝑢
𝑗

ℓ,𝑚
] | 𝑚 ∈ [𝑚ℓ ], 𝑗 ∈ [𝑘]}, 𝑐)

1 𝐿 = [];𝑈 = [];
2 constraints = MILP_OR({[𝑙 𝑗

ℓ,𝑚
, 𝑢

𝑗

ℓ,𝑚
] | 𝑚 ∈ [𝑚ℓ ], 𝑗 ∈ [𝑘]}) ; // Equations (2a) and (2b)

3 for 𝑖 = ℓ + 1; 𝑖 ≤ 𝐿; 𝑖 + + do
4 for𝑚 = 1;𝑚 < 𝑚𝑖 ;𝑚 + + do
5 𝐿𝑖,𝑚 = MILPSolve(min𝑏𝑖,𝑚 +∑𝑚𝑖−1

𝑚′=1𝑤𝑖,𝑚,𝑚′ · 𝑧𝑖−1,𝑚′ subject to constraints);

6 𝑈𝑖,𝑚 = MILPSolve(max𝑏𝑖,𝑚 +∑𝑚𝑖−1
𝑚′=1𝑤𝑖,𝑚,𝑚′ · 𝑧𝑖−1,𝑚′ subject to constraints);

7 constraints = constraints ∪MIPVerify_constraints(𝑁𝑖 , 𝐿𝑖 ,𝑈𝑖 ); // (2c) and (2d)

8 return constraints ∪ {𝑧𝐿,𝑐 ≤ max𝑐′≠𝑐 𝑧𝐿,𝑐′ }

∀𝑖 > ℓ,∀𝑚 ∈ [𝑚𝑖 ]


𝑧𝑖,𝑚 = 𝑧′𝑖,𝑚 𝐿𝑖,𝑚 ≥ 0

𝑧𝑖,𝑚 = 0 𝑈𝑖,𝑚 ≤ 0

𝑧𝑖,𝑚 ≥ 0; 𝑧𝑖,𝑚 ≥ 𝑧′𝑖,𝑚 ; 𝑧𝑖,𝑚 ≤ 𝑈𝑖,𝑚 · 𝑎𝑖,𝑚 ;
𝑧𝑖,𝑚 ≤ 𝑧′𝑖,𝑚 − 𝐿𝑖,𝑚 · (1 − 𝑎𝑖,𝑚); 𝑎𝑖,𝑚 ∈ {0, 1} else

(2d)

𝑧𝐿,𝑐 ≤ max

𝑐′≠𝑐
𝑧𝐿,𝑐′ (2e)

where the max function encoding is defined formally in Tjeng et al. [2019]. Algorithm 3 shows the

generation of this MILP. It begins by generating the disjunction over the outputs of 𝑁ℓ (Line 2).

Then, for every layer 𝑖 , it iterates the neurons and, for each, computes a lower and an upper bound

on the affine function (Lines 5–6) by calling a MILP solver with the constraints up to layer 𝑖 − 1.

Then, it adds the constraints of layer 𝑖 (Equations (2c) and (2d)) and continues to the next layer.

Refinement. We next explain how BaVerLy performs refinement, in case MILP_SUF is feasible.

This failure can arise either from a genuinely non-robust 𝜖-ball or from a spurious counterexample

caused by excluding the constraints of the first layers 𝑁1, . . . , 𝑁ℓ . If MILP_SUF over a batch 𝐵 is

feasible, by Theorem 4.1, the assignment identifies 𝑥 ∈ 𝐵 (where 𝐼𝑥 = 1) and 𝑦 ∈ 𝑏𝑜𝑢𝑛𝑑𝑠 [𝑥] [ℓ]
that is an adversarial example (i.e., argmax(𝑁𝐿 ◦ . . . ◦ 𝑁ℓ+1 (𝑦)) ≠ 𝑐). For this 𝑥 , BaVerLy performs

refinement: it runs MIPVerify on the entire network 𝑁 and 𝐵∞𝜖 (𝑥) (Line 22). Note that refinement

of 𝐵 to larger sets containing 𝑥 is not viable, because an adversarial example is found within the

bounds of 𝑥 , independently of the bounds of the other inputs in the batch (because of our disjunction

encoding). To expedite MIPVerify, BaVerLy passes it the bounds for 𝑥 up to layer ℓ .

4.3 Constructing Batches by Hierarchical Clustering
In this section, we describe our binary tree used for constructing the batches (in Line 11).

Goal. The goal of the binary tree is to provide an efficient approach to construct a batch in

every iteration. To boost the batch verification, the inputs in the batch should have 𝜖-balls whose

network’s computations are as similar as possible. This is because the closer the computations, the

smaller the bounds of the last layers whose analysis is joined and the fewer ReLUs that become

unstable in the batch. However, identifying the 𝜖-balls with the closest computations requires

analyzing each 𝜖-ball separately, defeating the purpose of the batch verification. Instead, as described

before, we approximate their closeness by the Hamming distance of the activation patterns of the

inputs at the center of the 𝜖-balls.
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Activation patterns. The activation pattern (AP) of an input 𝑥 is a boolean vector whose size

equals the number of ReLU neurons in the network. An entry 𝑖 in the vector is 1 or 0 depending on

whether the respective neuron is active (i.e., its input is positive). Formally:

Definition 4.2 (Activation Patterns). Given a neural network 𝑁 with 𝑛 ReLU neurons and an

input 𝑥 , the activation pattern of 𝑥 through 𝑁 is a boolean vector 𝑟𝑥 ∈ {0, 1}𝑛 , where 𝑟𝑥𝑖 is the state

of the 𝑖th ReLU when 𝑥 fed into 𝑁 . If the state is active (i.e., the input of the neuron 𝑖 is positive

given 𝑥 ), 𝑟𝑥𝑖 = 1, otherwise, 𝑟𝑥𝑖 = 0.

Unlike image similarity metrics, AP depends on the network. Thus, it captures the similarity

of inputs with respect to how the network perceives them. We rely on the Hamming distance for
measuring the distance of APs. Formally, the distance of two inputs is the number of different bits

in their activation patterns: 𝑑𝑖𝑠𝑡 (𝑥,𝑦) = |{ 𝑗 ∈ [𝑛] | 𝑟𝑥𝑗 ≠ 𝑟
𝑦

𝑗
}|. The lower the Hamming distance

of two APs over inputs 𝑥 and 𝑦, the fewer ReLU neurons that have distinct states. Consequently,

the fewer unstable neurons that stem from grouping these inputs’ 𝜖-balls and the lower the batch

verification’s complexity.

H-Cluster. Given the activation patterns of the inputs in 𝑆 , BaVerLy clusters the inputs using

Hierarchical Clustering (H-Cluster) with the complete-linkage criteria. H-Cluster greedily constructs

a dendrogram, a diagrammatic representation of the cluster hierarchy. H-Cluster begins by forming

a pairwise-distance matrix 𝐷 |𝑆 |× |𝑆 | of the inputs in 𝑆 by the Hamming distance of their AP (i.e.,

𝐷 [𝑥,𝑦] = 𝑑𝑖𝑠𝑡 (𝑥,𝑦)). Then, H-Cluster builds the dendrogram bottom-up. Initially, it forms a list of

clusters, each contains one input. At each step, it merges the clusters with the minimal distance

(follows by the complete linkage criteria). The distance of two clusters is the maximal distance of any

two inputs in the clusters: 𝑑𝑖𝑠𝑡 (𝐴, 𝐵) = max𝑥∈𝐴,𝑦∈𝐵 𝑑𝑖𝑠𝑡 (𝑥,𝑦). Figure 6a exemplifies a dendrogram.

Binary tree. Given the dendrogram over the activation patterns, BaVerLy constructs a binary

tree T over the inputs. The tree enables it to construct a batch of up to a given size and remove a

batch with logarithmic complexities in the size of the input set 𝑆 , on average. For every activation

pattern 𝑟𝑥 in the dendrogram, BaVerLy introduces a respective leaf node labeled by the input 𝑥 .

For every split in the dendrogram, BaVerLy introduces an inner node, and the relation between the

nodes follows exactly the structure of the dendrogram. Every inner node is marked by the number

of leaves in its subtree. This enables BaVerLy to easily construct a cluster up to a certain size. The

number of nodes in T is 𝑂 (2|𝑆 |) and its depth ranges between 𝑂 (𝑙𝑜𝑔2 ( |𝑆 |)) and 𝑂 ( |𝑆 |). The lower
bound is obtained when at every iteration of H-Cluster, all clusters are merged with some cluster,

resulting in a full and complete binary tree. The upper bound is obtained when the first iteration

of H-Cluster merges two inputs, and afterwards every iteration merges the largest cluster with a

singleton cluster. Figure 6b illustrates a binary tree constructed by BaVerLy. We next describe how

BaVerLy constructs a batch and how it removes a batch. To form a batch of up to size 𝑘 , BaVerLy
runs a pre-order traversal from the root of T. When it reaches a node whose number of leaves is at

most 𝑘 , it forms a batch that consists of all its leaves (by continuing the pre-order traversal) and

returns it. Pruning a batch is obtained by removing the inner node that BaVerLy used to construct

the batch and updating the batch sizes in each node along the path back to the root. Thus, this

operation’s average complexity is logarithmic in the tree size, which is |𝑆 |.

4.4 Adaptive Selection of Batch Size via a Multi-Armed Bandit
In this section, we describe how BaVerLy learns the optimal batch size (Line 10). This step provides

another advantage of verification of a large set of 𝜖-balls: not only BaVerLy can scale the analysis

using mini-batch verification but also if the set 𝑆 is large it can dynamically learn the optimal

mini-batch size. In particular, it may begin from larger mini-batches, for the relatively close inputs
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Fig. 7. A quantile-quantile plot comparing the empirical velocity distributions for batch sizes 2, 4, and 7
against the theoretical Gaussian distributions with the same mean and variance.

in 𝑆 , and as the inputs become farther apart, it can dynamically reduce the mini-batch size. We

next describe the mechanism for predicting the batch size via a multi-armed bandit (MAB) agent

and how it leverages the verification of previous batches to predict the next batch size.

Multi-armed bandit. The multi-armed bandit (MAB) is a reinforcement learning problem where

an agent iteratively selects an arm from a fixed set of arms {1, . . . , 𝐾}. Each arm has an unknown

distribution for reward. After selecting an arm, a random reward is sampled from the arm’s

distribution and added to the agent’s total reward. The agent’s goal is to maximize their total

reward. During the selection process, the agent learns the distributions of the arms. Consequently,

they face the known exploration-exploitation trade-off: at each iteration the agent can choose the arm
with the highest expected reward (exploitation) or an arm that may have better rewards (exploration).
The Thompson Sampling is a strategy for selecting the arms that effectively balances exploration

and exploitation [Thompson 1933]. Specifically, we focus on the Gaussian mean-variance bandits

(MVTS) algorithm proposed by Zhu and Tan [2020], in which the arms’ distributions are Gaussian. In

this case, the Thompson Sampling solves the Risk-Averse MAB problem, namely it balances reward

maximization and variance minimization (via a risk tolerance factor 𝜌 added to the agent’s goal).

In each iteration, the agent samples from the arms’ distributions and selects the arm that optimizes

the mean-variance objective function. Given the reward, it updates the arms’ distributions.

MAB for batch sizes. We define an arm for every mini-batch size up to MAX_BATCH_SIZE, which
is a hyper-parameter. After the MAB agent selects an arm 𝑘 , BaVerLy constructs a batch of up

to that size and verifies it. We define the reward as the velocity of this batch. Recall that velocity

is distance divided by time. We define a batch 𝐵’s distance as the number of inputs in 𝐵 whose

𝜖-balls are analyzed jointly (i.e., the inputs whose robustness state is updated in Line 30). The

batch’s time is the total runtime invested in proving the batch, i.e., the bound computation for

all 𝑥 ∈ 𝐵 from layer 𝑁1 to layer 𝑁ℓ , plus the time of the batch verification. This time excludes

the refinement time (i.e., the time spent to certify individual 𝜖-balls who failed during the batch

verification), because it is independent of the batch effort, and we account for those failures in the

distance calculation. Our MAB leverages MVTS, since in practice the batch velocity of every batch

size is approximately Gaussian-distributed. Figure 7 shows a quantile-quantile plot demonstrating

that the velocity distributions are close to Gaussian, for different batch sizes, on an MNIST fully

connected classifier with five hidden layers of 100 neurons each.

Unifying arms. The higher the number of arms, the longer it takes for MAB to converge to the

arms’ distributions. To expedite its convergence, we partition the arms into buckets. Each bucket

consists of values {𝑖, . . . , 𝑖 +BUCKET_SIZE−1}. If an arm is selected, the maximal value in the bucket

is used as the predicted batch size. If a batch of size 𝑘 is verified, its velocity is used for updating

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 372. Publication date: October 2025.



372:18 Saar Tzour-Shaday and Dana Drachsler-Cohen

the distribution of the arm containing this value 𝑘 ∈ {𝑖, . . . , 𝑖 + BUCKET_SIZE − 1}. For example, for

MAX_BATCH_SIZE = 8 and BUCKET_SIZE = 2, there are four arms: {1, 2}, {3, 4}, {5, 6}, {7, 8}. If MAB

selects the arm {5, 6}, it recommends using a batch size of 6. If after this recommendation, BaVerLy
builds a batch of size 3, this batch’s velocity is used to update the distribution of the arm {3, 4}.

4.5 Choosing The Layer for Batch Verification
We next explain how BaVerLy chooses the layer 𝑁ℓ for the batch verification. Selecting 𝑁ℓ is

challenging due to the scalability-precision trade-off introduced by our batch verification, which is

faster but adds overapproximation error. Although the batch’s input layer 𝑁ℓ does not add overap-

proximation error (due to our disjunction encoding), the following layers exhibit overapproximation

error, because the real-valued bounds of every neuron consider all the batch’s 𝜖-balls. The further

the layer from 𝑁ℓ , the higher the overapproximation error. This may suggest to favor 𝑁ℓ closer to

the output layer. However, BaVerLy analyzes each 𝜖-ball separately up to layer 𝑁ℓ . Thus, the closer

𝑁ℓ to the output layer the lower the reduction in the overall analysis time compared to one by one

verification. This may suggest to favor 𝑁ℓ closer to the input layer.

For convolutional neural networks, we choose 𝑁ℓ as the last convolutional layer (before the

fully connected layers). The motivation is that the output of this layer tends to be sufficiently

discriminative across different classes. Also, computing the bounds of convolutional layers is

relatively fast, since their neurons get as input only part of the neurons in the previous layer.

For fully connected networks, we have not observed a single global layer that is effective for

splitting. As known, the goal of neurons in neural networks is to extract from previous neurons the

information relevant for the classification. The better their extracted information the tighter the

bounds. For some networks, the bounds at earlier layers are sufficiently tight for batch verification.

Thus, splitting in an early layer enables BaVerLy to prove robustness. For other networks, splitting

in an early layer leads to spurious counterexamples and triggers more refinements. To estimate

the best 𝑁ℓ , we rely on initialization via sampling [Bergstra and Bengio 2012]. For each layer 𝑙 ,

we estimate its effectiveness by sampling an input from 𝑆 and verifying its 𝜖-ball when ℓ = 𝑙 . We

define ℓ as the layer with the minimal analysis time. Our estimate considers batches of size 𝑘 = 1

to eliminate the influence of the similarity of the inputs in the batch. Our approach has several

advantages. First, it is computationally efficient, since it focuses on batches of size one and relies

on the verification of only 𝐿 − 1 𝜖-balls. Second, it advances the task of group verification, since

it determines the robustness status of the sampled inputs. Third, it does not rely on an offline

mechanism or hyper-parameter tuning, which may not generalize well to an unseen network. Our

estimate approach is independent of BaVerLy’s analysis and can be improved by other mechanisms,

e.g., online learning of automated reasoning strategies for a set of similar problems [Wu et al. 2023].

Algorithm 4 shows how BaVerLy picks the layer to split. It takes as input the network 𝑁 , the set

of inputs 𝑆 , the class 𝑐 , the 𝜖 , and the dictionary is_robust. It maintains a dictionary layers_times
mapping a layer to its analysis time for a single 𝜖-ball of a sampled input. For each layer, BaVerLy
samples an input 𝑥 and verifies its 𝜖-ball when splitting in this layer (Line 5–Line 6). If a spurious

counterexample is discovered, it analyzes the 𝜖-ball without splitting (Line 7). Then, it updates the

status in is_robust and removes 𝑥 from 𝑆 . Lastly, it returns the layer with the minimal runtime.

4.6 Complexity Analysis of BaVerLy
In this section, we analyze the asymptotic complexity of our approach. We begin with the analysis

time of a single batch verification, followed by the overall complexity analysis of BaVerLy.

Batch verification. The verification of a batch 𝐵 of size𝑘 includes (1) computing the bounds of each

input in 𝐵 up to layer ℓ (Line 13–Line 16), (2) the batch verification (Line 18), and (3) the verification
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Algorithm 4: learnSplitLayer(𝑁 , 𝑆 , 𝑐 , 𝜖 , is_robust)

1 layers_times = [] // Dictionary mapping layers to runtimes

2 for 𝑙 ∈ {1, . . . , 𝐿 − 1} do
3 𝑥 = uniform(𝑆) // An input sample

4 start_time = current_time()
5 bounds = MILPBounds(𝑁𝑙 ◦ . . . ◦ 𝑁1, 𝑥 , 𝜖) // Compute bounds up to 𝑁𝑙

6 cex = MILPSolve(MILPBatch(𝑁𝐿 ◦ . . . ◦ 𝑁𝑙+1, {bounds[𝑙]}, 𝑐)) // Verify the rest

7 if cex ≠ ⊥ then cex = MIPVerify(𝑁 , 𝑥 , 𝜖 , bounds) // Refine

8 is_robust[𝑥]= cex == ⊥? Robust : Non-Robust
9 layers_times[𝑙] = current_time() − start_time

10 𝑆 = 𝑆 \ {𝑥}
11 ℓ = argmin(layers_times) // Choose the layer with the shortest runtime

12 return ℓ , 𝑆 , is_robust

of 𝜖-balls suspected as not robust (Line 22). The asymptotic time complexity of a MILP is exponential

in the number of binary variables. In our setting, this number is the sum of the ReLU neurons, 𝑘

(for the disjunction, Equation (2a)) and 𝑑𝑜𝑢𝑡 − 1 (for checking if class 𝑐 might not have the maximal

score, Equation (2e)). The complexity is thus𝑇 (𝐵) = 𝑂 (𝑘 ·2
∑ℓ

𝑖=1𝑚𝑖+(2𝑘+𝑑𝑜𝑢𝑡+
∑𝐿

𝑖=ℓ+1𝑚𝑖 )+𝑟 ·2𝑑𝑜𝑢𝑡+
∑𝐿

𝑖=1𝑚𝑖 ),
where𝑚𝑖 is the number of ReLU neurons in layer 𝑖 and 𝑟 is the number of 𝜖-balls suspected as non-

robust. We remind that verifying a batch after removing an 𝜖-ball that is suspected as non-robust

(Line 28) does not incur overhead. For comparison, the asymptotic time complexity of verifying

the 𝜖-balls one by one with MIPVerify is 𝑂 (𝑘 · 2𝑑𝑜𝑢𝑡+
∑𝐿

𝑖=1𝑚𝑖 ). If 𝑟 = 0, BaVerLy reduces MIPVerify’s

complexity by a factor of 𝑘 · 2
∑ℓ

𝑖=1𝑚𝑖
, which is added as an additive term, and multiplies by 2

𝑘
(which

is independent on the network size).

BaVerLy’s complexity. BaVerLy begins by passing the inputs in 𝑆 through 𝑁 , computing their

activation patterns, and storing them in a dictionary. The time complexity is negligible (compared

to our analysis) and the memory complexity is𝑂 ( |𝑆 |). The H-cluster incurs a runtime complexity of

𝑂 ( |𝑆 |3) and the resulting binary tree has a size of𝑂 (2|𝑆 |). The time complexity of operations on this

tree is𝑂 (𝑙𝑜𝑔|𝑆 |) on average and𝑂 ( |𝑆 |) in the worst-case. The time complexity of the operations on

the MAB agent depends on the number of arms. Since it is a very small number, the time complexity

is 𝑂 (1). The dominant factor in BaVerLy’s runtime is the verification (known to be NP-hard [Katz

et al. 2017]). Let 𝐵1, . . . , 𝐵𝑝 be all batches in BaVerLy’s run, their time complexity is

∑𝑝

𝑖=1
𝑇 (𝐵𝑖 ).

5 Evaluation
In this section, we present the experimental results of our approach. We begin by discussing our

implementation and evaluation setup. We then describe our experiments showing that: (1) BaVerLy
expedites the approach of verifying local robustness 𝜖-ball by 𝜖-ball on average by 2.3x and up to

4.1x, (2) BaVerLy determines robustness for all inputs, whereas shared certification verification [Fis-

cher et al. 2023] determines robustness only for 63% of the inputs and shows a lower maximal

speedup (1.21x), (3) the more inputs in the set, the higher the speedup in the analysis time per

input: 100 inputs already enable a 2x speedup, and (4) learning the optimal mini-batch size by our

multi-armed bandit boosts the performance of BaVerLy by 2.5x.

Implementation. We implemented BaVerLy in the Julia programming language (version 1.11.1),

as a module wrapper for MIPVerify [Tjeng et al. 2019]. We extended MIPVerify to support our
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refinement, where some of the bounds are given and need not be computed. We used Gurobi

(version 12.0.1) [Gurobi Optimization, LLC 2023] as the MILP solver. For the batch verification

(Lines 18 and 28) and MIPVerify (Line 22), we set Gurobi’s MIPFocus flag to 1 to guide it to focus on

finding a feasible solution rather than the optimal one, and we set its SolutionLimit flag to 1 so that

Gurobi would terminate when finding the first feasible solution. These adaptations fit our setting

since our goal is to determine whether an 𝜖-ball is robust or not, which translates to determining

whether these MILPs are feasible or not.

Evaluation setup. We conducted our experiments on Ubuntu 20.04.2 LTS OS on a dual AMD

EPYC 7742 64-Core Processor server with 1TB RAM and 128 cores. We compared BaVerLy to

MIPVerify [Tjeng et al. 2019] on which we build our MILP encoding. Given a set of inputs, MIPVerify

verifies their 𝜖-balls one by one. Its analysis time is the total analysis time over all 𝜖-balls. Gurobi is

used by BaVerLy and MIPVerify and it is parallelized over 8 threads and has the same flags’ values.

We evaluated BaVerLy on the MNIST dataset [Deng 2012], consisting of 28×28 grayscale images of

handwritten digits, and the CIFAR-10 dataset [Krizhevsky 2012], consisting of 32×32 RGB images

representing ten classes of common animals and vehicles. For MNIST, we adopted four network

architectures from Mirman et al. [2018]: the convolutional networks ConvSmall and ConvMed, and

the fully connected (FC) networks 5×100 and 6×100. They contain 3,604, 5,704, 500, and 600 ReLU

neurons, respectively. ConvSmall has two convolutional layers with ReLU, a fully connected layer

of 100 ReLU neurons, and a fully connected layer with ten neurons for assigning the scores to each

class. ConvMed is similar to ConvSmall but has slightly different padding and its first fully connected

has 1000 ReLU neurons. The 5×100 has five hidden layers and the 6×100 network has six hidden

layers, each with 100 ReLU neurons. We trained our MNIST models using the PGD adversarial

defense [Madry et al. 2018] with a perturbation limit of 𝜖 = 0.2, for the convolutional networks,

and a limit of 𝜖 = 0.1, for the fully connected networks. For CIFAR-10, we trained a ConvMed

network with 7,144 ReLU neurons using PGD with 𝜖 = 0.001. We incorporated techniques to

improve generalization and stability, including 𝐿1 regularization, adaptive learning rate scheduling,

and Xavier uniform weight initialization. Training was performed using Adam [Kingma and Ba

2014], for 6 epochs with a batch size of 128. Additionally, we executed standard scaling to transform

pixel values for improved performance and added a corresponding normalization layer when

loading the models. The natural accuracy of the networks is 96% for MNIST ConvMed, 93% for

ConvSmall and 5×100, 91% for 6×100 and 48% for CIFAR-10 ConvMed (similar to the accuracies of

the networks evaluated by Fischer et al. [2023]). For the convolutional networks, the split layer ℓ is

the last convolutional layer. For the fully connected networks, ℓ is chosen by learnSplitLayer. The
maximum batch size is MAX_BATCH_SIZE = 4 for the ConvMed networks and MAX_BATCH_SIZE = 8

for the rest. The bucket size for unifying batch sizes is BUCKET_SIZE = 2 and our MAB’s 𝜌 is 100.

5.1 Performance Analysis
In this section, we evaluate BaVerLy’s effectiveness in group verification and compare to MIPVerify.

Group verification on large sets. We begin with an experiment on large sets of inputs. In this

experiment, we consider all networks. For each, we run BaVerLy on sets 𝑆 of the first 100 inputs

of the same class (for several classes) and different values of 𝜖 . We compare its analysis time to

MIPVerify’s analysis time. We remind that both verifiers are complete (i.e., correctly determine

whether an 𝜖-ball is robust or not). Table 1 shows the certification rate, the total analysis time

of both approaches and BaVerLy’s speedup. The certification rate is the number of inputs whose

𝜖-balls are verified as robust (by both approaches) divided by the number of correctly classified

inputs. Results show that BaVerLy’s speedup is 2.3x on average and up to 4.1x. The highest speedup

is obtained on MNIST 5×100, where BaVerLy reduces the analysis time from 24 hours to 6 hours.
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Table 1. BaVerLy vs. MIPVerify over different networks and 𝜖 on sets with 100 inputs of the same class.

Dataset Network 𝜖 𝑐 Cert. MIPVerify BaVerLy Speedup

Rate [hours] [hours]

MNIST ConvMed 0.03 0 99/99 27.22 8.00 3.4

1 100/100 36.42 14.08 2.6

2 96/98 27.61 9.99 2.7

3 95/98 27.08 9.82 2.7

ConvSmall 0.05 0 95/98 2.04 1.36 1.5

1 98/100 2.30 0.96 2.4

2 78/91 1.90 1.33 1.4

3 78/89 2.07 1.38 1.5

5×100 0.03 0 96/98 13.87 4.92 2.8

1 96/100 23.63 5.75 4.1

2 79/90 8.80 5.70 1.5

3 78/93 10.88 6.23 1.7

6×100 0.03 0 88/97 11.50 5.46 2.1

1 92/100 33.85 12.79 2.6

2 75/88 15.10 8.77 1.7

3 94/98 14.37 5.43 2.6

CIFAR-10 ConvMed 0.001 0 37/39 2.64 1.07 2.4

1 61/62 4.18 1.97 2.1

2 31/31 1.74 0.87 2.0

3 39/41 2.89 1.60 1.8

Refined / Analyzedℓ

Fig. 8. Runtime breakdown and refinement frequency for the experiments in Table 1.

Figure 8 shows the runtime breakdown and refinement frequency. It shows that most 𝜖-balls are

verified within a batch. The MNIST convolutional networks have the shortest refinement phase,

while the fully connected networks have the shortest bound computation and longest refinement.

Group verification on small sets. Next, we evaluate BaVerLy on small sets of inputs. We consider

different networks and 𝜖 values. For each, we ran each approach on the first 100 test set images,

consisting of different classes (BaVerLy ran separately on each class). For such sets, BaVerLy almost
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Table 2. BaVerLy vs. MIPVerify over different networks and 𝜖 on sets with the first 100 test set images.

Dataset Network 𝜖 Cert. MIPVerify BaVerLy Speedup

Rate [hours] [hours]

MNIST ConvMed 0.03 98/100 31.98 11.96 2.6

ConvSmall 0.1 69/88 27.86 19.33 1.4

5×100 0.03 84/92 11.71 4.85 2.4

6×100 0.03 80/92 18.85 11.80 1.6

CIFAR-10 ConvMed 0.001 49/50 4.03 2.43 1.6

Fig. 9. Verification time per 𝜖-ball (in seconds) for different set sizes and the first two classes of MNIST.

does not benefit from learning the optimal mini-batch size and does not benefit from clustering

inputs with similar computations of the networks. Thus, this experiment is challenging for BaVerLy.
Table 2 shows the total analysis time (over all classes), for BaVerLy and MIPVerify. It further shows

the certification rate and BaVerLy’s speedup. BaVerLy achieves up to a 2.6x speedup compared to

MIPVerify. MNIST ConvMed has the best speedup (and the highest certification rate, 98/100).

Shared certification. We next discuss the empirical differences between BaVerLy and shared

certification [Fischer et al. 2023]. Shared certification relies on preprocessing (which takes multiple

hours) for generating templates which can expedite the analysis on unseen 𝜖-balls. It focuses on

incomplete verification, i.e., the robustness of 𝜖-balls can remain unknown. For example, in our

experiment over sets with the first 100 test set images, for ConvSmall and 𝜖 = 0.1, BaVerLy precisely
determines the certification rate, which is 69/88 (78%). However, verification that relies on the

DeepZ abstract domain [Singh et al. 2018], like shared certification, can only prove that 56 𝜖-balls

are robust (certification rate of 63%). Further, the highest speedup of shared certification over DeepZ

(on which it builds) is 1.21x, while BaVerLy’s speedup over MIPVerify is at least 1.4x and up to 2.6x.

Analysis time per 𝜖-ball. Next, we show that as the input set size increases, the average analysis

time per 𝜖-ball decreases. This experiment shows the effectiveness of clustering inputs in batches,

especially for larger sets where the likelihood of finding inputs with similar network computations

increases. Additionally, the larger the input set, the better our MAB agent in predicting optimal

mini-batch sizes. In this experiment, we focus on the MNIST networks and 𝜖 = 0.00001. We consider

the first two classes of MNIST and for each we construct input sets of different sizes from 10 to

1000 (for class 0, up to 980, which is its test set’s size). Figure 9 shows the average analysis time per

𝜖-ball as a function of the size of the set. Results show that, compared to the set with 10 inputs,

BaVerLy obtains up to a 4x speedup for 5×100, up to a 3.5x speedup for ConvSmall and up to a
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Table 3. BaVerLy vs. a variant that randomly chooses the mini-batch sizes. The times of the random variant
are averaged over three repetitions. The input set is the full test set of MNIST’s first class.

Dataset Network 𝜖 BaVerLy [m] BaVerLy w/ random size [m] Speedup

MNIST ConvMed 0.00001 142.55 639.73 4.5

ConvSmall 0.00001 35.79 53.64 1.5

5×100 0.00001 11.02 18.15 1.6

Table 4. BaVerLy vs. a variant with a given split layer ℓ , on sets of 50 MNIST images of the same class.

Network 𝜖 𝑐 BaVerLy [h] (ℓ) ℓ = 1 [h] ℓ = 2 [h] ℓ = 3 [h] ℓ = 4 [h] ℓ = 5 [h]

5×100 0.03 0 2.98 (1) 2.75 2.94 3.60 4.62 N/A

1 2.92 (1) 2.71 4.34 5.36 7.03 N/A

2 2.93 (1) 2.89 3.33 3.35 3.63 N/A

6×100 0.03 0 2.83 (1) 2.75 2.72 3.17 3.59 4.35

1 6.28 (3) 7.99 7.16 6.23 8.56 10.69

2 5.08 (1) 5.02 4.76 4.41 4.59 5.38

3.3x speedup for ConvMed, for the set with 1000 inputs. In fact, for all networks, a 2x speedup is

observed already for 100 inputs. This shows the effectiveness of our batches and learning.

5.2 Ablation Study
In this section, we show the effectiveness of BaVerLy’s components.

MAB effectiveness. We study the importance of learning the mini-batch size using a multi-

armed bandit (MAB). We consider a variant that randomly selects the mini-batch sizes. We set

MAX_BATCH_SIZE = 16 to make the learning more challenging for our MAB agent. We run both

approaches on the MNIST classifiers, where the input set is 980 test inputs of class 0. Table 3 shows

the analysis time and the speedup of BaVerLy. Results show that our MAB accelerates BaVerLy’s
verification time by 4.5x for ConvMed, by 1.5x for ConvSmall and by 1.6x for 5×100.

Split layer. We next show the effectiveness of BaVerLy in learning the split layer 𝑁ℓ (Algorithm 4).

We compare to a variant that fixes ℓ . We evaluate on MNIST 5×100 and 6×100 and three input

sets, each containing 50 images of the same class (0, 1 or 2). Table 4 shows the verification time in

hours and the layer that BaVerLy chose. The results show the importance of selecting a good ℓ and

that the optimal ℓ varies between the networks and input sets. The results also show that BaVerLy
selects the optimal split layer for most networks and classes with a overhead of 7.2 minutes, on

average. Even when a sub-optimal ℓ is selected, the overhead does not exceed 40.2 minutes.

Similaritymetrics. Wenext show the effectiveness of the activation pattern similarity.We compare

BaVerLy to variants that replace the activation pattern similarity with SSIM [Wang et al. 2004] and

LPIPS [Zhang et al. 2018] (using AlexNet activations). We evaluate on CIFAR-10 ConvMed with an

input set containing 100 inputs of the same class, for different classes and 𝜖 = 0.001. Figure 10a

shows the analysis time. It shows that the activation pattern similarity is better by 1.13x, on average.

Disjunction. Wenext show the importance of our disjunction encoding (Equation (1)). We evaluate

a variant that abstracts 𝜖-balls in the input layer (ℓ = 0) with the minimal bounding box. It does

not refine 𝜖-balls, because it cannot easily identify a suspect non-robust 𝜖-ball. We ran this variant
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(a) Analysis time on CIFAR-10 ConvMed, 𝜖 = 0.001.

𝑐 AP [m] SSIM [m] LPIPS [m]

0 64.3 72.3 69.3

1 118.6 135.3 154.8

2 52.2 57.4 58.2

(b) BaVerLywithout disjunction encoding, ℓ = 0, and
a 10 hour limit on MNIST ConvSmall, 𝜖 = 0.05.

Similarity metric #Analyzed #Robust

AP 75 1

SSIM 74 2

LPIPS 76 2

Fig. 10. BaVerLy with different similarity metrics.
Fig. 11. The confidence of 𝜖-balls verified within a
batch and 𝜖-balls that required a separate analysis.

Fig. 12. The analysis time of BaVerLy (in minutes) for different batches on MNIST ConvSmall, 𝜖 = 0.05.

with the three similarity metrics, on MNIST ConvSmall, 𝜖 = 0.05, and an input set consisting of 100

images of class 0, and a 10 hour limit. Figure 10b reports the number of analyzed inputs (whose

𝜖-ball is included in a batch) and the number of 𝜖-balls that were proven robust. On average, 25%

𝜖-balls could not be analyzed within 10 hours, and at most two 𝜖-balls were proven robust. In

contrast, BaVerLy determines robustness for all 98 𝜖-balls within 1.36 hours (Table 1).

Error case analysis. We next show an empirical difference between 𝜖-balls that were proven

within a batch and those that were refined. The difference is the network’s confidence in their

central input, i.e., the gap between the highest and second highest scores. Figure 11 shows a violin

plot over the confidence distribution of MNIST inputs of class 3, for different networks, for 𝜖-balls

that were proven in a batch (in blue) and refined (in red). Above the red violin, we show the number

of non-robust 𝜖-balls and the number of refined (suspected non-robust) 𝜖-balls. The figure shows

that the confidence is lower for refined 𝜖-balls and that at least half of them are indeed non-robust.

Batch size vs. Hamming distance. BaVerLy constructs a batch by determining its size, with the

MAB agent, and then choosing the most similar inputs. An alternative is to choose the most similar

inputs, with a MAB agent that selects the maximal pairwise distance, and then determine the batch

size. We next show that this alternative is ineffective since the analysis time is not correlated to the

maximal pairwise Hamming distance. We consider a variant that randomly selects a mini-batch size

(up to 16) and then constructs a batch of exactly this size (if possible), to draw balanced statistics

for all sizes. We evaluate on MNIST ConvSmall, 𝜖 = 0.05, and input sets consisting of all 980 and
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1135 test set inputs of class 0 and 1. Figure 12 shows the analysis time of each batch as a function

of the maximal pairwise Hamming distance. Each batch is colored by its size. The results show that

the analysis time of every distance has a wide range, whereas batches of the same size have similar

analysis time. For example, for class 1, the analysis of batches with distance 70 takes 1-9 minutes,

whereas for batches of size 8 it takes 4-6 minutes. That is, the analysis time is related to the batch

size (we remind that batches are evaluated by their velocity, which depends on the analysis time).

6 Related Work
In this section, we discuss related work for boosting neural network verification.

Boosting by previous analysis. Several neural network verifiers boost their analysis by relying on

previous analysis. Verifiers targeting continuous verification (incremental verification) leverage

the intermediate analysis results of a network to expedite the analysis of its variants obtained by

further training or fine-tuning [Cheng and Yan 2021; Ugare et al. 2023; Wei and Liu 2023]. FANC

proposes proof sharing for generating intermediate layer templates that capture the property being

verified and adapt them for similar networks to expedite their verification [Ugare et al. 2022]. Shared

certifications extend this concept to boost the analysis on unseen 𝜖-balls by generating abstract

templates of intermediate analysis results during preprocessing [Fischer et al. 2022]. DeepAbstract

analyzes a set of inputs during preprocessing to identify similar neurons by their activation

patterns [Ashok et al. 2020]. These neurons are abstracted when verifying 𝜖-balls, thereby boosting

their analysis. Similarly, AccMILP analyzes a set of inputs during preprocessing to identify neurons

with less impact on the network’s accuracy [Zheng et al. 2025]. Accordingly, the verification of an

𝜖-ball performs linear relaxation only to these neurons.

Boosting by learning. Several neural network verifiers employ learning to expedite their analysis.

Wan et al. [2020] boost existing verifiers by learning a prioritization over classes by their likelihood

to be the classes of adversarial examples. VeeP expedites local robustness verification of a network

classifier in semantic feature neighborhoods by relying on active learning to partition the verification

process into smaller steps [Kabaha and Drachsler-Cohen 2022]. Similarly to BaVerLy, it predicts
the next step by computing the analyzer’s velocity on previous steps. Learning has also been

proposed to expedite the analysis of verifiers in other domains. Brázdil et al. [2015] rely on machine

learning to improve the verification of Markov decision processes (MDPs), efficiently analyzing

probabilistic reachability and temporal properties without exhaustively exploring the entire state

space. Dimitrakopoulos et al. [2023] reduce hardware verification efforts using a multi-armed

bandit to automatically select the most promising test sequences. Wu et al. [2023] learn optimal

strategies for expediting the automated reasoning of a set of similar problems. They sample problem

candidates, train a cost model to predict the runtime of a strategy for a given problem, and use it to

dynamically select efficient strategies for future problems.

7 Conclusion
We present BaVerLy, a verifier that analyzes the robustness of a neural network in a set of 𝐿∞
𝜖-balls. BaVerLy is sound and complete. The key idea is to identify the 𝜖-balls for which the network

has similar computations and group their analysis in a mini-batch. BaVerLy relies on a multi-armed

bandit to predict the optimal mini-batch size. BaVerLy begins the batch analysis in a middle layer

and encodes the inputs to this layer precisely. This encoding also enables an effective refinement.

We evaluated BaVerLy on fully connected and convolutional networks for MNIST and CIFAR-

10. Experimental results show that BaVerLy scales the verification on average by 2.3x and up to

4.1x, reducing verification time from 13 hours to 5 hours, on average. Our results also show the

importance of learning the optimal batch sizes: it scales BaVerLy by 2.5x.
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A Running Example
We next describe a running example of Algorithm 1, given an MNIST 3×100 fully connected

classifier with 3 hidden layers, ten MNIST images 𝑆 = {𝑥1, . . . , 𝑥10}, class 𝑐 = 0 and 𝜖 = 0.1. BaVerLy
begins by identifying that all inputs are classified as 𝑐 . Then, it determines whether to split in layer

ℓ = 1 or ℓ = 2 as follows. First, it samples an input 𝑥5 and verifies its 𝜖-ball when splitting the

network at layer 1. Then, it samples 𝑥3 and verifies its 𝜖-ball when splitting the network at layer 2.

Since the verification runtime of 𝑥3 is shorter, it sets ℓ = 2. Both 𝜖-balls are robust, BaVerLy updates
their status in is_robust and removes these inputs from 𝑆 . BaVerLy continues by computing the

activation patterns and constructing the binary tree using H-Cluster. Then, it initializes the MAB

agent and begins iterations while the tree is not empty. In the first iteration, theMAB agent returns

𝑘 = 6. BaVerLy performs a pre-order search and returns the mini-batch 𝐵 = {𝑥2, 𝑥4, 𝑥6, 𝑥7, 𝑥10}.
Then, it computes the bounds up to the layer ℓ = 2 for every input in 𝐵. Then, it performs a

batch analysis from layer 3 till the output layer. The MILP solver returns a counterexample, where

𝐼𝑥2 = 1. Thus, BaVerLy checks whether 𝐵∞𝜖 (𝑥2) is robust and expedites its analysis by leveraging the
already computed bounds from the input layer till layer ℓ . The MILP solver finds a counterexample,

indicating that 𝑥2 is Non-Robust. Then, BaVerLy removes 𝑥2 from 𝐵, adds the constraint 𝐼𝑥2 = 0

and calls the MILP solver again. The solver returns there is no counterexample, thus BaVerLy
determines that all inputs {𝑥4, 𝑥6, 𝑥7, 𝑥10} are robust. It then updates their status in is_robust and

updates the distribution of batch size 5, based on the velocity of 𝐵. The velocity is
4
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, where the

denominator is the total time of the analysis, except for the additional analysis time of 𝑥2. Then,

BaVerLy begins another iteration. TheMAB agent returns 𝑘 = 4. Thus, BaVerLy adds all remaining

inputs to the mini-batch 𝐵 = {𝑥1, 𝑥8, 𝑥9}. BaVerLy continues similarly to the previous iteration

and identifies that all 𝜖-balls are robust, thus it updates their status. It updates the distribution of

batch size 3 based on the velocity
3

23
. At the end of this iteration, T is empty, all inputs in 𝑆 are

determined as robust or not and BaVerLy terminates.

B Proof
Theorem 4.1. Equation (1) is feasible if and only if there exists 𝑦 ∈ [𝑙𝑖 , 𝑢𝑖 ] for some 𝑖 ∈ [𝑘].

Proof. In the first direction, we assume that the MILP is feasible. Since ∀𝑖 ∈ [𝑘] : 𝐼𝑖 ∈ {0, 1},
Equation (1a) implies that there exists 𝑖 ∈ [𝑘] such that 𝐼𝑖 = 1, and ∀𝑗 ≠ 𝑖 ∈ [𝑘] : 𝐼 𝑗 = 0. From

assigning the binary values in Equation (1b), it holds that 𝑦 ≥ 𝑙𝑖 and for every 𝑗 ≠ 𝑖 . 𝑦 ≥ 0.

Additionally, from assigning them in Equation (1c), it holds that 𝑦 ≤ 𝑢𝑖 and for every 𝑗 ≠ 𝑖 . 𝑦 ≤ 𝑢𝑀 .

Because 𝑙𝑖 ≥ 0 and 𝑢𝑖 ≤ 𝑢𝑀 , we obtain 𝑦 ∈ [𝑙𝑖 , 𝑢𝑖 ].
In the second direction, we assume that there exists 𝑦′ ∈ [𝑙𝑖 , 𝑢𝑖 ] for some 𝑖 ∈ [𝑘]. Consider the

assignment of 𝐼𝑖 = 1, ∀𝑗 ≠ 𝑖 ∈ [𝑘] : 𝐼 𝑗 = 0, and 𝑦 = 𝑦′. We show that it satisfies the above MILP.

Clearly, Equation (1a) is satisfied. By the assumption, it holds that 𝑙𝑖 ≤ 𝑦′ ≤ 𝑢𝑖 . Hence,𝑦 ≥ 𝑙𝑖 ·1 = 𝑙𝑖 ·𝐼𝑖
and𝑦 ≤ 𝑢𝑖 ·1+𝑢𝑀 ·0 = 𝑢𝑖 · 𝐼𝑖 +𝑢𝑀 · (1− 𝐼𝑖 ). For every 𝑗 ≠ 𝑖 , we set 𝐼 𝑗 = 0. Since𝑦′ ≥ 𝑙𝑖 ≥ 0, it follows

that 𝑦 ≥ 𝑙 𝑗 · 0 = 𝑙 𝑗 · 𝐼 𝑗 . Additionally, 𝑦′ ≤ 𝑢𝑖 ≤ 𝑢𝑀 , thus 𝑦 ≤ 𝑢 𝑗 · 0 + 𝑢𝑀 · 1 = 𝑢 𝑗 · 𝐼 𝑗 + 𝑢𝑀 · (1 − 𝐼 𝑗 ).
Therefore, Equation (1b) and Equation (1c) are true for every 𝑗 ∈ [𝑘]. □
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