
Boosting Few-Pixel Robustness Verification via
Covering Verification Designs

Yuval Shapira, Naor Wiesel, Shahar Shabelman, and Dana Drachsler-Cohen

Technion, Haifa, Israel
{shapirayuval@campus,wieselnaor@campus,shabelman@campus,ddana@ee}.technion.ac.il

Abstract. Proving local robustness is crucial to increase the reliability
of neural networks. While many verifiers prove robustness in L∞ ϵ-balls,
very little work deals with robustness verification in L0 ϵ-balls, capturing
robustness to few pixel attacks. This verification introduces a combina-
torial challenge, because the space of pixels to perturb is discrete and of
exponential size. A previous work relies on covering designs to identify
sets for defining L∞ neighborhoods, which if proven robust imply that
the L0 ϵ-ball is robust. However, the number of neighborhoods to verify
remains very high, leading to a high analysis time. We propose cover-
ing verification designs, a combinatorial design that tailors effective but
analysis-incompatible coverings to L0 robustness verification. The chal-
lenge is that computing a covering verification design introduces a high
time and memory overhead, which is intensified in our setting, where
multiple candidate coverings are required to identify how to reduce the
overall analysis time. We introduce CoVerD, an L0 robustness verifier that
selects between different candidate coverings without constructing them,
but by predicting their block size distribution. This prediction relies on
a theorem providing closed-form expressions for the mean and variance
of this distribution. CoVerD constructs the chosen covering verification
design on-the-fly, while keeping the memory consumption minimal and
enabling to parallelize the analysis. The experimental results show that
CoVerD reduces the verification time on average by up to 5.1x compared
to prior work and that it scales to larger L0 ϵ-balls.

1 Introduction

Neural networks are very successful in various applications, most notably in
image recognition tasks [14]. However, neural networks are also vulnerable to
adversarial example attacks [33,17]. In an adversarial example attack, an at-
tacker slightly perturbs the input to mislead the network. Many attack models
and different kinds of perturbations have been considered for neural networks
implementing image classifiers [33,15,26]. The most commonly studied pertur-
bations are Lp perturbations, where p is 0 [9,40], 1 [10], 2 [33,4] or ∞ [15,4]. For
Lp perturbations, the attacker is given a small budget ϵ and the goal is to find
a perturbed input in the Lp ϵ-ball that causes misclassification.

In response to adversarial attacks, many verifiers have been proposed
to reason about the robustness of neural networks in a given neighbor-
hood of inputs. Most deterministic robustness verifiers analyze robustness in

2 Y. Shapira et al.

L∞ ϵ-balls [34,25,32,13,21,2], while some deterministic verifiers analyze L2 ϵ-
balls [22,19] or L1 ϵ-balls [38,41]. Probabilistic verifiers, often leveraging ran-
domized smoothing [6], have been proposed for analyzing Lp ϵ-balls for p ∈
{0, 1, 2,∞} [23,28,39,11]. Other verifiers analyze neighborhoods defined by se-
mantic or geometric features (e.g., brightness or rotation) [20,24,3]. An existing
gap is deterministically verifying robustness in L0 ϵ-balls, for a small ϵ, also
known as robustness to few pixel attacks. In L0 ϵ-balls, ϵ is the number of pixels
that can be perturbed. Since ϵ is an integer (as opposed to a real number), we de-
note it as t. L0 t-balls consist of discrete perturbations, unlike many other attack
models whose perturbations are continuous. Thus, their analysis is a challenging
combinatorial problem. Theoretically, robustness verification of an L0 t-ball can
be reduced into a set of robustness verification tasks over L∞ neighborhoods,
each allows a specific set of t pixels to be perturbed. However, this approach is
infeasible in practice for t > 2, since the number of the L∞ neighborhoods that
need to be proven robust is

(
v
t

)
, where v is the number of pixels. To illustrate,

for MNIST images, where v = 784, the number of neighborhoods is 1.6 · 1010 for
t = 4, 2.4 ·1012 for t = 5, and 3.2 ·1014 for t = 6. That is, every minimal increase
of t (by one) increases the neighborhood size by two orders of magnitude.

A recent work proposes a deterministic L0 robustness verifier for few pixel
attacks, called Calzone [30]. Calzone builds on two main observations. First,
if a network is robust to perturbations of a specific set of k pixels, then it is
also robust to perturbations of any subsumed set of these pixels. Second, often
L∞ robustness verifiers can analyze robustness to arbitrary perturbations of k
specific pixels, for values of k that are significantly larger than t. They thus
reduce the problem of verifying robustness in an L0 t-ball to proving robustness
in a set of L∞ neighborhoods defined by a set of k-sized pixel sets, subsuming
all possible sets of t pixels. To compute the k-sized pixel sets, they rely on
covering designs [16,35]. Given parameters (v, k, t), a covering is a set of k-sized
sets that cover all subsets of size t of a set [v] = {1, . . . , v} (e.g., the pixel set).
Covering designs is a field in combinatorics providing construction techniques
to compute coverings. The challenge is to compute a covering of minimal size.
While many covering constructions have been proposed, computing an optimal
covering is an open combinatorial problem for most values of v, k and t. Further,
most best-known coverings for t > 3 are far from the best general lower bound,
known as the Schönheim bound [29]. This severely impacts the analysis time
of Calzone. In practice, Calzone often does not complete within the five hour
timeout when analyzing L0 5-balls. To scale, it is crucial to lower the number
of analyzed sets. While there are effective covering constructions renowned for
the small coverings they compute, they are limited to specific values of v and k,
which are incompatible for the analysis of L0 robustness. Since Calzone treats
covering constructions as black-box, it is limited to rely on analysis-compatible
coverings and cannot benefit from these effective constructions.

To boost the robustness verification of few pixel attacks, we propose a new
covering type, called a covering verification design (CVD), tailoring covering de-
signs for L0 robustness verification. CVD relies on a highly effective construction to

Boosting Few-Pixel Robustness Verification via Covering Verification Designs 3

obtain an analysis-incompatible covering and partially induces it to an analysis-
compatible covering, where sets can have different sizes. Although the exact sets
and their sizes depend on a random choice, we prove that the mean and variance
of the set sizes are independent of this choice and have closed-form expressions.
Partially inducing this effective construction has been proposed before [27], how-
ever it has been proposed for another combinatorial design, requiring a bound
on the maximal set size in the covering, unlike CVD. We demonstrate that the
sizes of CVDs are lower by 8% for t = 4 and by 15% for t = 5 than the respec-
tive Schönheim lower bound. This improvement, enabled by considering a new
type of coverings, is remarkable for scaling L0 robustness analysis. To date, for
analysis-compatible values of v and k and for t ≥ 3, it is impossible to obtain
an optimal covering design, and even if we obtained it, its size is at least the
Schönheim bound. In particular, Calzone’s considered coverings are larger by
4x than the Schönheim lower bound for t = 4 and by 8.4x for t = 5. While
promising, CVDs raise a practical challenge: their construction as well as their
final size introduce a high memory overhead. Further, to minimize the analysis
time, the verifier chooses between multiple coverings. However, the total mem-
ory overhead makes it infeasible to store these coverings in a covering database
without limiting their size (like Calzone does).

We introduce CoVerD, an L0 robustness verifier, boosting Calzone’s perfor-
mance by leveraging CVDs. CoVerD has two main components, planning and anal-
ysis. The planning component predicts the CVD that will allow it to minimize
the overall analysis time. To reduce the memory overhead, it predicts the best
CVD out of many candidates, without constructing the candidates. This prediction
relies on estimating the set size distribution of a candidate covering, using our
expressions for the mean and variance. The analysis component constructs the
chosen CVD. The challenge is that the original covering that is being induced may
be too large to fit the memory. To cope, CoVerD induces the covering while con-
structing the original covering. Further, it constructs on-the-fly a partitioning
of the CVD so that the analysis can be parallelized over multiple GPUs. Another
advantage of the on-the-fly construction is that CoVerD does not need to prepare
coverings for every image dimension in advance. This both saves memory con-
sumption and makes CoVerD suitable for any image classifier, without requiring
to precompute coverings for new image dimensions, as Calzone requires.

We evaluate CoVerD on convolutional and fully-connected networks, trained
for MNIST, Fashion-MNIST, and CIFAR-10. CoVerD is faster than Calzone in
verifying robust t-balls on average by 2.8x for t = 4 and by 5.1x for t = 5. Further,
CoVerD scales to more challenging t-balls than Calzone. In particular, it verifies
some 6-balls, which Calzone does not consider at all, within 42 minutes.

2 Background

In this section, we define the problem of verifying robustness of an image classifier
in an L0 t-ball and provide background on Calzone [30].

4 Y. Shapira et al.

L0 robustness verification We address the problem of determining the local ro-
bustness of an image classifier in an L0 t-ball of an image x. An image classifier
N takes as input an image x consisting of v pixels, each ranges over [0, 1] (all
definitions extend to colored images, but omitted for simplicity’s sake). It re-
turns a vector consisting of a score for every possible class. The classification
the classifier N assigns to an input image x is the class with the maximal score:
cx = argmax(N(x)). We focus on classifiers implemented by neural networks.
Specifically, our focus is on fully-connected and convolutional networks, since
many L∞ robustness verifiers can analyze them [32,13,21,2,34,25]. However, like
Calzone, CoVerD is not coupled to the underlying implementation of the classifier
and can reason about any classifier for which there are L∞ robustness verifiers
that it can rely on. The problem we study is determining whether a classifier N
is locally robust in the L0 t-ball of an input x, for t ≥ 2. That is, whether every
input whose L0 distance from x is at most t is classified by N as x is classified.
Formally, the t-ball of x is Bt(x) = {x′ | ||x′ − x||0 ≤ t} and N is locally robust
in Bt(x) if ∀x′ ∈ Bt(x). argmax(N(x′)) = argmax(N(x)). We note that the L0

distance of two images is the number of pixels that the images differ, that is
||x′ − x||0 = |{i ∈ [v] | xi ̸= x′

i}| (where [v] = {1, . . . , v}). In other words, an L0

perturbation to an image x can arbitrarily perturb up to t pixels in x.

Calzone Calzone, depicted in Figure 1, is an L0 robustness verifier. It verifies
by determining the robustness of a classifier N in all neighborhoods in which a
specific set of pixels S is arbitrarily perturbed, for every S ⊆ [v] of size t. Namely,
to prove robustness, it has to determine for every such S whether N classifies the
same all inputs in the neighborhood consisting of all images that are identical to
x in all pixels, but the pixels in S. We denote this neighborhood by IS(x) = {x′ ∈
[0, 1]v | ∀i /∈ S. x′

i = xi}. Such neighborhoods can be specified as a sequence of
intervals, one for every pixel, where the ith interval is [0, 1] if i ∈ S (i.e., it can
be perturbed) or [xi, xi] if i /∈ S (i.e., it cannot be perturbed). Most existing L∞
robustness verifiers can determine the robustness of such interval neighborhoods.
However, verifying

(
v
t

)
interval neighborhoods, one for every selection of t pixels

to perturb, is practically infeasible for t > 2. Instead, Calzone builds on the
following observation: if N is locally robust in a neighborhood IS′(x) for S′ ⊆ [v]
of size k > t, then N is also robust in every IS(x), for S ⊆ S′ of size t. This
observation allows Calzone to leverage covering designs to reduce the number
of neighborhoods analyzed by an L∞ verifier. Given three numbers (v, k, t), for
t ≤ k ≤ v, a covering C(v, k, t) is a set of blocks, where (1) each block is subset
of size k of [v] and (2) the blocks cover all subsets of [v] of size t: for every
S ⊆ [v] of size t, there is a block B ∈ C(v, k, t) such that S ⊆ B. Coverings
are evaluated by their size, |C(v, k, t)|, where the smaller the better. We next
describe the components of Calzone: analysis, planning and covering database.

Calzone’s analysis Calzone begins the analysis by obtaining a covering C(v, k1, t)
from its covering database, where k1 is determined by the planning component
(described shortly). It pushes all blocks in the covering into a stack. It then
iteratively pops a block S from the stack and verifies the robustness of N in

Boosting Few-Pixel Robustness Verification via Covering Verification Designs 5

An image
classifier 𝑁

An image 𝑥 of
dimension 𝑣

The number
of pixels to
perturb 𝑡

Calzone

Planning:
1. Sampling: for 𝑘 ∈ {𝑡, … , MAX_K = 99}, estimate average analysis time

and success rate by submitting to GPUPoly 𝑛samples 𝐼𝑆(𝑥) with random 𝑆

2. Dynamic programming: compute the optimal sizes of the blocks in the
coverings 𝑘1, 𝑘2, … , 𝑘𝑚−1, 𝑡

robust /
non-robust

A K strategy: 𝑘1, 𝑘2, … , 𝑘𝑚−1, 𝑡

Analysis:

Covering
database

blocks = 𝐶(𝑣, 𝑘1, 𝑡)
 while blocks is not empty:
 𝑆 = pop(blocks)
 if (GPUPoly(𝑁, 𝐼𝑆 𝑥) = robust) continue
 if (|𝑆|> 𝑡) push(blocks, 𝐶𝑆(|𝑆|, 𝑘𝑛𝑒𝑥𝑡 𝑆 , 𝑡))

 else if (MILPVerifier(𝑁, 𝐼𝑆 𝑥) = robust) continue
 else return non-robust
 return robust

Fig. 1: The Calzone L0 robustness verifier.

IS(x) by running GPUPoly [25]. GPUPoly is a sound L∞ robustness verifier
which is highly scalable because it performs the analysis on a GPU. However,
it relies on a linear relaxation and thus may fail proving robustness due to
overapproximation errors. If it determines that IS(x) is robust, Calzone continues
to the next block. Otherwise, Calzone performs an exact analysis or refines the
block. If |S| = t, Calzone invokes a sound and complete mixed-integer linear
programming (MILP) verifier [34]. If it determines that IS(x) is not robust,
Calzone returns non-robust, otherwise Calzone continues to the next block. If
|S| is greater than t, Calzone refines S by pushing to the stack all blocks in a
covering for S and t. The blocks’ size is ki+1, which is the block size following
the current block size ki = |S|, as determined by the planning component.
The covering is obtained by retrieving from the covering database the covering
C(|S|, ki+1, t) and renaming the numbers in the blocks to range over the numbers
in S (instead of [|S|]), denoted as CS(|S|, ki+1, t). If Calzone observes an empty
stack, it returns robust. This analysis is proven sound and complete. To scale,
Calzone parallelizes the analysis over multiple GPUs (for GPUPoly) and CPUs
(for the MILP verifier). Technically, the first covering is split between the GPUs,
each independently analyzes its assigned blocks and refines if needed.

Calzone’s planning The planning determines the block sizes of the first covering
and of the refinements’ coverings. These are given as a K strategy, a decreasing
series k1 > . . . > km, where k1 ≤ MAX K = 99 and km = t. Calzone predicts the
K strategy that minimizes the overall analysis time using dynamic programming,
defined over the analysis time of the first covering, the average fraction of blocks
that will be refined, and the analysis time of the refined blocks. This computation
requires GPUPoly’s success rate and average analysis time for neighborhoods
IS(x), for all |S| ≤ MAX K. These are estimated by sampling nsamples = 400 sets
S for every k ≤ MAX K and submitting their neighborhood IS(x) to GPUPoly.

6 Y. Shapira et al.

Calzone’s covering database As described, the analysis obtains coverings from
a database. This database has been populated by obtaining well-optimized cov-
erings from online resources and extending them for large values of v and k
using general covering constructions. Because of these general constructions, the
database’s coverings tend to be far from the Schönheim bound [29], the best-
known general lower bound, especially for large values of v (the image dimen-
sion). This inefficiency results in longer analysis, since more blocks are analyzed.

3 Our Approach: Covering Verification Designs

To scale Calzone’s analysis, it is crucial to reduce the number of blocks that
are analyzed by GPUPoly or the MILP verifier. A dominant contributor to this
number is the size of the first covering, for two reasons. First, the first covering is
over a large v (the image dimension), thus its size is significantly larger than the
sizes of coverings added upon refinement, which are over significantly smaller v
(typically v ≤ 80 and at most v ≤ MAX K). Second, the first covering has an
accumulative effect on the number of refinements, and consequently it dominates
the analysis time. Reducing this size is theoretically possible by relying on finite
geometry covering constructions [27,1,16], which are renowned for computing
very small coverings. However, finite geometry coverings are limited to (v, k, t)
triples in which v and k are defined by related mathematical expressions over t.
In Calzone’s analysis, the first covering has to be defined over a given v (the
image dimension) and t (the number of perturbed pixels). Thus, for some values
of v and t, there is no finite geometry covering. For the other values, there are
very few values for k, leading to long analysis either because they are large and
have a low success rate, triggering many refinements, or small and have very large
coverings. We propose to tailor induced coverings for L0 robustness analysis in
order to leverage finite geometry coverings. To this end, we introduce a new type
of a covering design, called a covering verification design (CVD). We next provide
background on finite geometry coverings and induced coverings. We then define
partially-induced coverings and our new covering type. We discuss its properties,
its effectiveness, and the practical challenges in integrating it to L0 verification.

7

1 2 3

5 6

4

Fig. 2: The Fano Plane.

Finite geometry coverings Finite geometry cov-
ering constructions are widely known for obtain-
ing small (sometimes optimal) coverings [27,1,16].
Popular finite geometry constructions rely on pro-
jective geometry (PG) or affine geometry (AG).
We focus on PG, but our approach extends to
AG. A PG construction views the problem of con-
structing a covering for a given (v, k, t) from a
finite geometry point of view, where v is the num-
ber of points in the geometry. It constructs coverings by computing flats (linear
subspaces) of dimension t−1, each containing k points. Since every t points from
[v] are contained in at least one flat [27], the flats provide a covering. Figure 2

Boosting Few-Pixel Robustness Verification via Covering Verification Designs 7

shows the Fano plane, a well-known example. In this example, there are v = 7
points, the flats are of dimension t − 1 = 1 (the lines and the circle), each con-
taining k = 3 points. The set of flats forms a covering, where each flat is a block:
C(7, 3, 2) = {{1, 2, 3}, {1, 4, 6}, {1, 5, 7}, {2, 4, 7}, {2, 5, 6}, {3, 4, 5}, {3, 6, 7}}. PG
coverings exist for triples where v = qm+1−1

q−1 and k = qt−1
q−1 , for a prime power q

and m ≥ t ≥ 2 (it also exists for m = t−1, but then v = k, which is unhelpful to
our analysis). Because PG is restricted to such triples, Calzone cannot effectively
leverage it for the first covering, whose v and t are given. This is because for
common image dimensions (e.g., v = 784 for MNIST and v = 1024 for CIFAR-
10), there are no suitable q and m. Even if there are suitable q and m, there are
very few possible k values, which are unlikely to include or be close to an optimal
value of k. Thus, either they are smaller than an optimal k, leading to larger
coverings and a longer analysis time, or that they are larger than an optimal k
and have a lower success rate, leading to many refinements, resulting, again, in
a longer analysis time. For example, for v = 364 and t = 5, the only suitable
values are q = 3 and m = 5 (i.e., 364 = (35+1 − 1)/(3− 1)), namely there is only
one triple for these values of v and t. In this triple, k = (35 − 1)/(3− 1) = 121.
Since k ≈ v

3 , neighborhoods IS(x) for which |S| = 121 are not likely to be robust,
thus such k is likely to have a low success rate. Induced coverings [16] enable to
leverage finite geometry coverings for other (v, k, t) triples, as next explained.

Induced coverings Given v ≤ v′ and k ≤ k′, a covering C(v′, k′, t) can be induced
to form a covering C(v, k, t) [16]. The induced covering is obtained in three
steps. First, we select a subset of numbers of size v, denoted L ⊆ [v′], and
remove every l ∈ [v′] \ L from every block in C(v′, k′, t′). This results in a set
of blocks of different sizes that covers all subsets of L of size t [27, Lemma 1].
This follows since every subset S ⊆ L of size t is a subset of [v′] and thus there
is B ∈ C(v′, k′, t) such that S ⊆ B. The first step removes from B only numbers
from [v′] \ L and thus S is contained in the respective block to B after this
step. The next two steps fix blocks whose size is not k. The second step extends
every block whose size is smaller than k with numbers from L. The third step
refines every block whose size is larger than k to multiple blocks of size k that
cover all of its subsets of size t. This step significantly increases the number of
blocks, unless the number of blocks larger than k is negligible. We note that these
steps provide a covering over the numbers in L (i.e., CL(|L|, k, t)). A covering
for (|L|, k, t) can be obtained by renaming the numbers to range over [|L|].

Partially-induced covering Our new covering design is an instance of a partially-
induced covering. A partially-induced covering is the set of blocks obtained by
the first step, where the blocks cover all subsets of L of size t and are of differ-
ent sizes. For example, for the Fano plane and L1 = {4, 5, 6, 7}, the partially-
induced covering is: C1 = {{}, {4, 6}, {5, 7}, {4, 7}, {5, 6}, {4, 5}, {6, 7}}, while
for L2 = {1, 2, 3, 4}, it is: C2 = {{1, 2, 3}, {1, 4}, {1}, {2, 4}, {2}, {3, 4}, {3}}.
Partially-induced coverings have two benefits in our setting: (1) by not extending
blocks whose size is smaller than k, we increase the likelihood that GPUPoly
will prove their robustness, and (2) by not refining blocks whose size is larger

8 Y. Shapira et al.

than k, we (a) preserve the number of blocks as in the original covering, (b) pro-
vide GPUPoly an opportunity to verify these blocks, and (c) rely on the opti-
mal refinement sizes (computed by the dynamic programming) for blocks that
GPUPoly fails proving robustness. Our covering design partially induces PG
coverings, to obtain additional benefits for L0 robustness verification.

Covering verification designs Given the number of pixels v and the number
of pixels to perturb t, a covering verification design (CVD) is the set of blocks
obtained by partially inducing a PG covering C(v′, k′, t), where v ≤ v′, using
a random set of numbers L ⊆ [v′] of size v. The numbers in the blocks can
later be renamed to range over [v]. For example, since the Fano plane is a PG
covering, the partially-induced coverings C1 and C2 are CVDs. A CVD has two
important properties. First, it is a partially-induced covering and thus has all
the aforementioned advantages in our setting. In particular, its size is equal to
the size of the original covering, which is highly beneficial since CVD induces from
PG coverings, known for their small size. Second, although different sets L lead
to different block size distributions, we prove that the mean block size and its
variance are the same regardless of the choice of L. Further, we identify closed-
form expressions for them and show that the variance is bounded by the mean.
For example, although the block size distributions of C1 and C2 are different, they
have the same average block size (127) and the same variance (2449). This property
has practical advantages: (1) it allows us to estimate the block size distribution
(Section 4.2), and (2) since the variance is bounded by the mean, the smaller
the mean block size, the less likely that there are very large blocks, which are
less likely to be proven robust by GPUPoly. To prove this property, we rely on
the fact that PG coverings (and AG coverings) are also a combinatorial design
called a balanced incomplete block design (BIBD) [7, Part VII, Proposition 2.36].
We next describe BIBD and then state our theorem on its mean and variance.

BIBD Given positive integers (v, b, r, k, λ), a BIBD is a set of b blocks, each is
a subset of [v] of size k, such that every i ∈ [v] appears in r blocks and every
i ̸= j ∈ [v] appear together in λ blocks. For example, the Fano plane is a BIBD
with v = 7, b = 7, r = 3, k = 3, λ = 1. This is because it has b = 7 blocks, each
block is a subset of [v] = {1, . . . , 7} of size k = 3, every number in {1, . . . , 7}
appears in r = 3 blocks and every two different numbers appear together in
λ = 1 block. Given a BIBD with parameters (v′, b, r, k′, λ), we define a partially-
induced BIBD for v ≤ v′ by selecting a subset of numbers L ⊆ [v′] of size v
and removing every l ∈ [v′] \ L from every block in the BIBD (empty blocks or
repetitive blocks are kept). While the distribution of the induced blocks’ sizes
depends on L, the mean block size and its variance depend only on v, v′, k′.

Theorem 1. Given a (v′, b, r, k′, λ)-BIBD, for v′ > 1, and 1 ≤ v ≤ v′, for every
L ⊆ [v′] of size v, the mean µv′,k′,v and variance σ2

v′,k′,v of the block sizes in the
partially-induced BIBD satisfy:
1. µv′,k′,v = vk′

v′

2. σ2
v′,k′,v = µv′,k′,v

(
1 + (v−1)(k′−1)

v′−1 − µv′,k′,v

)
= vk′

v′

(
1 + (v−1)(k′−1)

v′−1 − vk′

v′

)

Boosting Few-Pixel Robustness Verification via Covering Verification Designs 9

3. σ2
v′,k′,v ≤ µv′,k′,v

Proof. 1. We prove µv′,k′,v = vk′

v′ . Since |L| = v and r is the number of occur-
rences of every number in all blocks, the sum of the sizes of the induced blocks
is vr. By counting arguments, for a BIBD it holds that rv′ = bk′ [7, Part II,

Proposition 1.2], and so r = bk′

v′ . That is, the sum of the induced blocks’ sizes is
vbk′

v′ . The mean is obtained by dividing by the number of blocks b: µv′,k′,v = vk′

v′ .

2. We prove σ2
v′,k′,v = µv′,k′,v

(
1 + (v−1)(k′−1)

v′−1 − µv′,k′,v

)
.

Let Z ∈ N0
b be a vector such that, for every n ∈ [b], Zn is the size of block n in

the partially-induced BIBD. It can be written as Z = ATxL, where A represents
the BIBD and xL the set L, used for partially inducing the BIBD. The matrix A
is a v′×b incidence matrix, where A[m,n] = 1 if m is in block n and A[m,n] = 0
otherwise. The vector xL is a v′-dimensional vector, where xL[m] = 1 if m ∈ L
and xL[m] = 0 otherwise. Thus, the average of the squares of the block sizes,

denoted E[Z2], is E[Z2] = 1
b

(∑b
n=1(A

TxL)
2
n

)
= 1

b∥A
TxL∥22 (1).

By the variance definition, σ2
v′,k′,v = E[Z2] − µ2

v′,k′,v. Thus, we need to show:

E[Z2] = µv′,k′,v(1+
(v−1)(k′−1)

v′−1) = vk′

v′ (1+
(v−1)(k′−1)

v′−1) = k′

v′ v+
k′(k′−1)
v′(v′−1)v(v−1). By

counting arguments [7], we have k′

v′ =
r
b and k′(k′−1)

v′(v′−1) = λ
b . Namely, it suffices to

show: E[Z2] = 1
b (rv + λv(v − 1)). By (1), we can show ∥ATxL∥22 = rv+λv(v−1).

We prove by induction on v = |L| that ∥ATxL∥22 = rv + λv(v − 1):
Base For v = 1, we show ∥ATxL∥22 = r · 1 + λ · 1 · 0: Since v = |L| = 1, by
definition of a BIBD, the vector of the induced blocks’ sizes Z has r ones and
the rest are zeros. Thus, ∥Z∥22 = r. Since Z = ATxL, the claim follows.
Induction hypothesis Assume that the claim holds for every 1, . . . , v.
Step Let L ⊆ [v′] such that |L| = v+1. Pick some i ∈ L and define L′ = L \ {i}
of size v. We get xL = xL′ + ei, where ei is the ith standard unit vector. Thus:

∥ATxL∥22 = ∥AT (xL′ + ei)∥22 = ∥ATxL′∥22 + ∥AT ei∥22 + 2
〈
ATxL′ , AT ei

〉
– By the induction hypothesis, ∥ATxL′∥22 = rv + λv(v − 1).
– Since ei can be viewed as xL′′ for some L′′ of size 1, we get ∥AT ei∥22 = r.
– We show

〈
ATxL′ , AT ei

〉
= xT

L′

(
AAT

)
ei = λv: Since A is an incidence ma-

trix of a BIBD, AAT is the matrix with r on the diagonal and λ elsewhere [7,
Part II, Theorem 1.8]. Therefore,

(
AAT

)
ei is a vector whose entries are λ

except for the ith entry which is r. The vector xL′ has v ones and 0 on the
ith entry (since i /∈ L′). Thus, their dot product is xT

L′

(
AAT

)
ei = λv.

Putting it all together: ∥ATxL∥22 = rv+λv(v−1)+r+2λv = r(v+1)+λ(v+1)v.

3. We show σ2
v′,k′,v ≤ µv′,k′,v by showing that 1 + (v−1)(k′−1)

v′−1 − µv′,k′,v ≤ 1.

Since µv′,k′,v = vk′

v′ , we show (v−1)(k′−1)
v′−1 ≤ vk′

v′ . We have 1 ≤ v ≤ v′ and 1 < v′,

thus we get v−1
v′−1 ≤ v

v′ . Since k′ − 1 ≥ 0, we get (v−1)(k′−1)
v′−1 ≤ v(k′−1)

v′ ≤ vk′

v′ . ⊓⊔

Size of covering verification designs CVDs enable us to obtain coverings whose
sizes are small, often close or better than their respective Schönheim bound.

10 Y. Shapira et al.

0 20 40 60 80 100 120
Block Size (k)

1

2

3

4

5
Th

e r
at

io
of

a c
ov

er
ing

 si
ze

an
d t

he
 Sc

ho
nh

eim
 bo

un
d

CVD
Calzone

(a) The plot for t = 4.

0 20 40 60 80 100 120
Block Size (k)

0

2

4

6

8

10

Th
e r

at
io

of
a c

ov
er

ing
 si

ze
an

d t
he

 Sc
ho

nh
eim

 bo
un

d

CVD
Calzone

(b) The plot for t = 5.

Fig. 3: The ratio of CVD sizes and their respective Schönheim bound vs. the ratio
of Calzone’s covering sizes and their Schönheim bound. The black line is ratio
1, i.e., coverings whose sizes are equal to the respective Schönheim bound.

Given a CVD whose mean block size is a real number k, we define its respective
Schönheim bound as the bound for the covering design of (v, ⌈k⌉, t). Note that
this bound is not a lower bound on the size of the CVD, since the CVD can have
blocks larger than ⌈k⌉ and thereby be smaller than covering designs for (v, ⌈k⌉, t).
Still, comparing to this bound enables understanding how much smaller our
coverings are compared to the coverings considered by Calzone, whose sizes
are lower bounded by the Schönheim bound. Figure 3 shows the ratio of the
sizes of our CVDs and their respective Schönheim bound and the ratio of the
sizes of Calzone’s covering designs and their Schönheim bound. The comparison
is for v = 784 and t = 4 (Figure 3a) and t = 5 (Figure 3b). We compute
CVDs from different PG coverings and the figure shows CVDs whose mean block
size k is at least 10. For Calzone, we show all coverings in its database. The
plots demonstrate that typically the size of a CVD is smaller or equal to the
Schönheim bound, and on average, the ratio is 0.92 for t = 4 and 0.85 for
t = 5. In contrast, Calzone’s coverings are significantly larger than the Schönheim
bound, on average the ratio is 4.04 for t = 4 and 8.44 for t = 5. The plots also
show that Calzone has many more coverings than the number of CVDs. This is
because Calzone relies on general techniques to compute coverings and thus it
can generate a covering for every k ≤ MAX K = 99 (except that it is limited to
coverings with at most 107 blocks). In contrast, our CVDs induce PG coverings
and are thus limited to coverings whose mean block size is given by the expression
given in Theorem 1, over v′ and k′ such that there is a PG covering for (v′, k′, t).

Challenge: memory consumption The main challenge in computing CVDs is that
it requires to compute a PG covering for large values of v′ and k′, which poses
a high memory overhead. To illustrate, in our experiments, CoVerD uses a CVD

induced from a PG covering for (v′ = 1508598, k′ = 88741, t = 5). If CoVerD

stored this covering in the memory, it would require 124GB of memory, as-
suming each number in a block takes a byte. To cope, CoVerD computes the

Boosting Few-Pixel Robustness Verification via Covering Verification Designs 11

An image
classifier 𝑁

An image 𝑥 of
dimension 𝑣

The number
of pixels to
perturb 𝑡

CoVerD

Planning:
1. Sampling: for 𝑘 ∈ {𝑡, … , MAX_ K = 200}, estimate average analysis time

and success rate by submitting to GPUPoly 𝑛samples 𝐼𝑆(𝑥) with random 𝑆;

if success rate = 0 for 𝑛fail 𝑘-s, reduce the number of samples 𝑛samples

2. Dynamic programming: define a function 𝑓𝑅 mapping a set size 𝑘 to its
optimal refinement size 𝑘𝑟𝑒𝑓, for every 𝑘 ∈ {𝑡 + 1, … , 𝑀𝐴𝑋_𝐾}

3. For every candidate covering verification design, defined by (𝑞, 𝑚):
1. Estimate the block size distribution 𝑑𝑖𝑠𝑡 𝑞, 𝑚
2. Predict the overall analysis time 𝑇𝑑𝑖𝑠𝑡 𝑞,𝑚

4. Let 𝑞∗, 𝑚∗ be the candidate with the minimal 𝑇𝑑𝑖𝑠𝑡 𝑞∗,𝑚∗

5. Define 𝐿 = 𝑟𝑎𝑛𝑑𝑜𝑚_𝑜𝑟𝑑𝑒𝑟𝑒𝑑_𝑠𝑒𝑡(𝑣,
𝑞∗𝑚∗+1

−1

𝑞∗−1
)

robust /
non-robust

𝑓𝑅 , 𝑞∗, 𝑚∗ , 𝐿

Analysis:

Refinements’
covering
database

while (CoveringGenerator(𝑞∗, 𝑚∗, 𝑡, 𝐿) has more blocks):
 blocks = blocks.push(next_block())
 while blocks is not empty:
 // continue as Calzone
 // upon refinement to 𝑆, use 𝐶𝑆 𝑆 , 𝑓𝑅 𝑆 , 𝑡
 return robust

Fig. 4: CoVerD: An L0 robustness verifier.

partially-induced covering during the PG covering construction. However, even
the partially-induced coverings can consume a lot of memory, since the number
of blocks can be large. Calzone faced a similar challenge and coped by restrict-
ing the size of the covering designs to at most 107, which allowed it to keep
all coverings in the covering database. While CoVerD could take a similar ap-
proach, this would prevent it from picking CVDs of larger size which overall may
lead to a lower analysis time (since they will require fewer refinements). Instead,
CoVerD generates a CVD on-the-fly and uses the covering database only for the
refinements, which tend to require coverings of significantly smaller size than the
first covering. Another advantage of building the CVD on-the-fly is that it enables
CoVerD to analyze any classifier over any image dimension, without any special
adaptation. This is in contrast to Calzone, which requires to extend its covering
database upon every new image dimension v.

4 CoVerD

In this section, we present CoVerD, our L0 robustness verifier. We first describe
our system and its components and then provide a running example.

4.1 Our System

Figure 4 shows CoVerD that, given an image classifierN , an image x with v pixels,
and the maximal number of perturbed pixels t, returns whether N is robust in
the t-ball of x. We next describe its planning and analysis components.

12 Y. Shapira et al.

Planning The planning component consists of several steps. First, it samples
sets of different sizes k to estimate the success rate and average analysis time
of their respective neighborhoods, like Calzone. Since CoVerD considers CVDs, it
can observe larger block sizes than Calzone, thus the maximal sampled set size
is MAX K = 200, unlike 99 in Calzone. Because of the larger bound, CoVerD is
likely to observe many more k values whose success rate is zero. To save execution
time while still enabling to determine the success rate and average analysis time
of large k values, CoVerD reduces the number of samples after observing nfail

times k values whose success rate is zero. Second, the planning component relies
on Calzone’s dynamic programming for computing a K strategy, but uses it
differently. Since CoVerD begins the analysis from a CVD consisting of different
sized blocks, there is no single K strategy. Instead, it runs Calzone’s dynamic
programming for every k ∈ {t+1, . . . ,MAX K} to define a function fR mapping
every set size k to the best set size to use upon a refinement of a set of size k.
Then, the planning component iterates over every candidate CVD and picks the
best CVD for the analysis. It picks between the candidates without constructing
them, as the construction is time and memory intensive and we wish to execute
it only for the chosen candidate. To pick the best candidate, it leverages two
observations. First, a CVD candidate is uniquely defined by the parameters of the
PG covering, (q,m) (formally, its parameters are (q,m, t) but t is identical in all
our PG coverings), so it suffices to pick a pair (q,m) which can later be used to
construct the CVD. Second, to predict the CVD with the minimal analysis time,
only the block sizes are needed. In Section 4.2, we describe how to estimate a
CVD’s block size distribution dist(q,m) and estimate its analysis time Tdist(q,m),
in order to predict the best CVD. Given the best candidate (q∗,m∗), it randomly
samples an ordered set L of v indices from v′, which is a function of (q∗,m∗).

Analysis After determining the best (q∗,m∗), L, and the refinement mapping
fR, CoVerD continues to analyze the robustness of the classifier N in the t-ball
of the given image x. The analysis constructs the CVD on-the-fly block-by-block.
Technically, there is a covering generator that constructs the blocks one-by-one.
Every block is pushed to the stack of blocks to verify, and then the analysis
proceeds as Calzone. That is, the block is popped, submitted to GPUPoly, and
if needed, refinement is executed. After the block is verified (directly or by re-
finement), the next block in the CVD is obtained from the covering generator. We
note that although CoVerD could use CVDs for refinements, the coverings for re-
finements are smaller than the first covering since these coverings are for triples
(ṽ, k̃, t) where ṽ is typically few dozens and at most MAX K = 200, whereas the
first covering is for a triple (ṽ, k̃, t) where ṽ is the image dimension. Like Cal-
zone, CoVerD parallelizes the analysis on GPUs. Thus, our covering generator
generates disjoint parts of the covering, described in Section 4.3.

4.2 Choosing a Covering Verification Design

In this section, we describe how CoVerD predicts the CVD that enables CoVerD to
minimize the overall analysis time. We begin with describing the CVD candidates,

Boosting Few-Pixel Robustness Verification via Covering Verification Designs 13

then describe how CoVerD estimates their block size distributions, and finally
explain how CoVerD predicts the CVD leading to the minimal analysis time.

Candidates A CVD candidate is defined by the PG covering from which it is
partially-induced. Recall that a PG covering is defined for triples (v′, k′, t), where

v′ = qm+1−1
q−1 and k′ = qt−1

q−1 for a prime power q and m ≥ t ≥ 2. By Theorem 1,
given a PG covering, the mean block size of the CVD has a closed-form expres-

sion µv′,k′,v = vk′

v′ = v(qt−1)
qm+1−1 . By this expression, given q, as m increases µv′,k′,v

decreases, and given m, as q increases µv′,k′,v decreases. Further, this expression
approaches 0 for high values of q or m. Thus, to obtain a finite set of candidates,
we provide a positive lower bound on µv′,k′,v, denoted MIN K (our implemen-
tation sets it to t). That is, the finite set of candidates CoVerD considers is:

{(q,m) ∈ N2 | q is a prime power, m ≥ t, v′ ≥ v, µv′,k′,v ≥ MIN K}

Estimating the block size distribution For every CVD candidate, defined by (q,m),
CoVerD estimates the distribution of its block sizes. While Theorem 1 provides
expressions for the mean block size and the variance, it does not define the
block size distribution. We empirically observe that our CVDs have the prop-
erty that the distribution of their block sizes resembles a discrete approximation
of a Gaussian distribution with mean µv′,k′,v and variance σ2

v′,k′,v. The higher
the mean and the number of blocks, the higher the resemblance. Figure 5a vi-
sualizes this resemblance for a CVD, with v = 784, induced from a PG with
parameters q = 17, m = 5, and t = 5. We believe this resemblance exists
because a CVD is partially-induced from a PG covering given a random set of
numbers L. This resemblance may not hold for other choices of L, for example
for the choice of L proposed by [27], which compute a partially-induced cov-
ering whose maximal block size is bounded (unlike our CVD). Because of this
resemblance, we model the block size as drawn from the Gaussian distribution

with the true mean and variance G
(
µv′,k′,v, σ

2
v′,k′,v

)
. Even if this modeling is

imprecise, in practice, it is sufficient to allow CoVerD identify the candidate
CVD leading to the minimal analysis time. Formally, given a CVD candidate de-
fined by (q,m), the distribution of the block sizes is dist(q,m) = {Nq,m

k | k ≤
MAX K}, where Nq,m

k is our estimation of the number of blocks of size k in
this CVD. We define the probability that a block size in this CVD is of size

k as: P(k − 0.5 < Z ≤ k + 0.5) = Φ
(

(k+0.5)−µv′,k′,v
σv′,k′,v

)
− Φ

(
(k−0.5)−µv′,k′,v

σv′,k′,v

)
,

where Z ∼ G
(
µv′,k′,v, σ

2
v′,k′,v

)
and Φ is the cumulative distribution function

(CDF) of a Gaussian distribution with mean 0 and variance 1. The number of
blocks bq,m is identical to the number of blocks in the PG covering, which has
a closed-form expression [16]. Thus, the estimated number of blocks of size k is:
Ñq,m

k = bq,m ·P(k−0.5 < Z ≤ k+0.5). To make the estimated number an integer,

we define Nq,m
k as the floor of Ñq,m

k and add 1 with probability of the remainder:

Nq,m
k =

⌊
Ñq,m

k

⌋
+ X where X ∼ Bern

(
Ñq,m

k −
⌊
Ñq,m

k

⌋)
. Figure 5b visualizes

how close our estimation of the block size distribution is to the distribution of

14 Y. Shapira et al.

20 40 60 80
Block Size

0.00
0.01
0.02
0.03
0.04
0.05
0.06

Pe
rc

en
ta

ge
 o

f B
lo

ck
s real

Gaussian

(a) The block size distribution of a CVD and
the respective Gaussian distribution.

20 40 60 80
Block Size

0

20000

40000

60000

80000

Nu
m

be
r o

f B
lo

ck
s

real
predicted

(b) Our estimated block size distribution
vs. the distribution of a respective CVD.

Fig. 5: Block size distributions.

the CVD shown in Figure 5a. We note that CoVerD considers a candidate and
estimates its block size distribution only if its estimated number of overly large
blocks (larger than MAX K) is close to zero. Formally, it considers candidates

that satisfy bq,m ·
(
1− Φ

(
MAX K−µv′,k′,v

σv′,k′,v

))
≤ ϵ, where ϵ is a small number. This

is the reason that dist(q,m) = {Nq,m
k | k ≤ MAX K} consists of estimations

only for blocks whose size is at most MAX K.

Predicting the best CVD Given the candidates and their estimated block size
distributions, CoVerD chooses the CVD which will enable CoVerD to minimize
the overall analysis time. To this end, it predicts for every candidate CVD its
overall analysis time. The prediction relies on: (1) the estimated number of
blocks Nq,m

k of size k, (2) the average analysis time of a block of size k, de-
noted k array[k][time] (given by the initial sampling), (3) the fraction of the
non-robust blocks of size k, which is one minus the success rate of k, denoted
k array[k][success] (given by the initial sampling) and (4) the analysis time of
refining a non-robust block of size k, denoted T (k) (given by the dynamic pro-
gramming, as defined in [30]). Similarly to Calzone’s dynamic programming, the
analysis time is the sum of the analysis time of verifying all blocks in the CVD

and the analysis time of the refinements of the non-robust blocks:

Tdist(q,m) =

MAX K∑
k=t

Nq,m
k · (k array[k][time] + (1− k array[k][success]) · T (k))

This computation ignores blocks of size less than t since they do not cover
any subset of size t and need not be analyzed to prove L0 robustness. After
predicting the analysis time of every candidate, CoVerD picks the candidate with
the minimal time.

Boosting Few-Pixel Robustness Verification via Covering Verification Designs 15

Algorithm 1: CoveringGenerator(q, m, t, L, iGPU)

Input: PG parameters (q, m, t), an ordered set of v indices L = [s1, . . . , sv]

which is a subset of [q
m+1−1
q−1

], and an index of a GPU iGPU .
Output: A stream of the covering verification design’s blocks.

1 ∀i ∈ [v]. P [:, i] = a unique vector in Fm+1
q computed for si // P ∈ F(m+1)×v

q

2 M = [M ∈ F(m−t+1)×(m+1)
q | M is full rank and in reduced row echelon form]

3 for j = 0; j < |M|; j ++ do
4 if j modulo GPUs ̸= iGPU then continue
5 R = M[j]× P

6 block =
{
i ∈ [v] | R[:, i] = 0⃗

}
// generate induced block

7 output block

4.3 Constructing a Covering Verification Design

In this section, we present our covering generator that computes a CVD. The
covering generator operates as an independent process, one for every GPU, that
outputs blocks a-synchronically. At every iteration, every GPU worker obtains
a block from its covering generator, analyzes it with GPUPoly, and refines if
needed. If the block is robust or its refinement does not detect an adversarial
example, the GPU worker obtains the next block from the covering generator.
The covering generator relies on the chosen CVD’s parameters q and m and the
ordered set L from the planning component. It computes the PG covering for (q,
m, t) block-by-block and induces it to obtain a CVD. Generally, its construction
follows the meta-algorithm of generating PG coverings described in [16]. The
novel parts are our implementation of inducing blocks immediately upon gener-
ating them and partitioning them to enable their analysis to proceed in parallel
over the available GPUs. We next describe the covering generator.

Algorithm 1 shows the algorithm of our covering generator. It takes as input
the PG parameters (q,m, t), an ordered set L of v indices from [v′] (where v′ =
qm+1−1

q−1), and the GPU index iGPU . As described in Section 3, a PG construction

for (v′, k′, t) views v′ as the number of points in the geometry. Formally, given
the finite field Fq of order q, we identify the points of the geometry as a subset
W ⊂ Fm+1

q of size v′ (technically, these points are representatives of equivalence
classes over Fm+1

q , as explained in [16]). To later partially-induce the covering
using L, Algorithm 1 maps every index in L to a unique point in W and stores
all points (column vectors) in a matrix P (Line 1). Then, Algorithm 1 begins to
construct the PG covering by computing flats (linear subspaces) of dimension

t− 1, each containing k′ = qt−1
q−1 points. As described in [16], every block in the

PG covering is a solution (a set of points in W) to m− t+1 independent linear
equations over m+1 variables. Such a linear system can be represented as a full
rank matrix, where its solutions are vectors in the matrix’s null space. Thus, to
compute the blocks in the PG covering, Algorithm 1 defines a set of matrices
M, each is over Fq, of dimension (m − t + 1) × (m + 1), and full rank (equal

16 Y. Shapira et al.

to m − t + 1). Each matrix has exactly k′ points in W in its null space. These
points form a PG block (a flat of dimension t−1). To avoid block duplication, the
matrices in M need to have different null spaces. Thus, Algorithm 1 considers
matrices in reduced row echelon form, i.e., M is all full rank (m−t+1)×(m+1)
matrices over Fq in reduced row echelon form (Line 2). The covering generator
then iterates these matrices. To avoid a high memory overhead, the matrix M[j]
is generated only upon reaching its index j. If j belongs to the disjoint part of the
given GPU, its induced block is generated (Line 4). To construct a PG block, one
needs to compute all the points in the null space of M[j]. However, the generator
requires only the partially-induced blocks. Thus, it immediately induces the block
by obtaining all points si, for i ∈ [v], whose respective point P [:, i] belongs to
the null space of M[j]. To this end, it defines R as the multiplication of M[j]
and P (Line 5), forms the induced block by identifying the points that are in the
null space of M[j] (i.e., every si satisfying R[:, i] = 0⃗), and makes the induced
block a subset of [v] by mapping every si in the induced block to i (Line 6).

4.4 A Running Example

In this section, we describe a real execution of CoVerD, for an MNIST image, a
fully-connected network (6×200 PGD in Section 5), and t = 4. CoVerD begins
with the planning component. It first estimates the success rate and average
analysis time of blocks. For every k ∈ {4, 5, . . . , 200}, it samples blocks S (subsets
of [784]) of size k and submits their neighborhood IS(x) = {x′ ∈ [0, 1]v | ∀i /∈
S. x′

i = xi} to GPUPoly. Based on all samples for k, it estimates the success
rate and the average analysis time. For instance, for k = 34 the success rate
is 94.05% and the average analysis time is 16.19ms, while for k = 41 they are
65.85% and 16.96ms. Then, CoVerD runs Calzone’s dynamic programming to
map every k ∈ {5, 6, . . . , 200} to the refinement size. For example, k = 34 is
mapped to 28 and k = 41 to 33. Next, CoVerD determines the CVD for the first
covering, out of 50 candidates. For each candidate, it predicts the block size
distribution and the respective overall analysis time of this candidate. To this
end, it computes the mean, variance, and number of blocks using the closed-form
expressions. For example, the CVD of the candidate (q = 23,m = 4) has mean
block size 34.087, variance 32.518 and 292, 561 blocks. The CVD of (q = 19,m = 4)
has mean block size 41.263, variance 38.867, and 137, 561 blocks. Although the
second candidate has less than half the number of blocks of the first candidate,
CoVerD predicts that using the first candidate will enable a faster analysis. This
is because its success rate is significantly higher and thus it will require fewer
refinements (e.g., the success rate of its mean block size is 94.05%, whereas the
second candidate’s success rate of the mean block size is 65.85%). The estimated
analysis times (in minutes) are Tdist(23,4) = 21.20 and Tdist(19,4) = 27.92. The
last step of the planning component samples an ordered set L of size 784 (the

number of pixels in the MNIST image) from [23
5−1

23−1] = [292561]. In total, the
planning component takes 63.5 seconds.

Then, CoVerD continues to the analysis component. It starts by creating eight
instances of the covering generator (Algorithm 1), one for each GPU. A covering

Boosting Few-Pixel Robustness Verification via Covering Verification Designs 17

generator creates blocks for its GPU one-by-one, given q∗ = 23, m∗ = 4, t = 4
and L. For every CVD block S, the GPU worker defines its neighborhood IS(x)
and submits to GPUPoly. If GPUPoly verifies successfully, the next CVD block
is obtained. If GPUPoly fails proving robustness, S is refined. As example, if a
block S of size 34 is refined, the analysis pushes to the stack all blocks in the
covering CS(34, 28, 4), which is the covering for (34, 28, 4) that is in the covering
database, where the numbers are renamed to range over the numbers in S. In
this example, GPUPoly is invoked 659, 326 times, where 44% of these calls are
for blocks in the CVD. The maximal size of block submitted to GPUPoly is 62
and the minimal size is 8. In particular, CoVerD did not submit any block of size
t = 4 (i.e., there are no calls to the MILP verifier). The analysis takes 23.49
minutes, which is only 10.8% higher than the estimated time.

5 Evaluation

In this section, we describe the experimental evaluation of CoVerD on multiple
datasets and networks and compare it to Calzone.

Implementation and setup We implemented CoVerD1 as an extension of Calzone2.
Experiments ran on a dual AMD EPYC 7713 server, 2TB RAM, eight NVIDIA
A100 GPUs and Ubuntu 20.04.1. We evaluate CoVerD on the networks evaluated
by Calzone, whose architectures are described in ERAN3. We consider networks
trained for popular image datasets: MNIST and Fashion-MNIST, consisting of
28 × 28 greyscale images, and CIFAR-10, consisting of 32 × 32 colored images.
CoVerD’s hyper-parameters are: the maximal block size is MAX K = 200, the
number of samples is initially nsamples = 400 and after nfail = 10 failures, it
is reduced to nsamples = 24, and the bound on the estimated number of overly
large blocks is ϵ = 0.01. Our covering database, used for the refinement steps,
contains coverings for v, k ≤ 200, t ≤ 6. The covering sizes are restricted to at
most 500, 000 blocks. This limitation is stricter than Calzone, which limited to
107, but in practice this is unnoticeable since CoVerD only uses the coverings
for refinements, and even Calzone typically refines to coverings whose size is
at most 500, 000. Like Calzone, the database consists of coverings computed by
extending coverings from the La Jolla Covering Repository Tables4 using con-
struction techniques from [16, Section 6.1]. Additionally, our database includes
finite geometry coverings (for v, k ≤ 200, t ≤ 6) and extends coverings using the
dynamic programming of [16, Section 5]. Like Calzone, We ran CoVerD with eight
GPUPoly instances and five MILP instances, except for the CIFAR-10 network
where it ran 50 MILP instances. For the matrix multiplication over finite fields
(Algorithm 1), CoVerD relies on an effective library [18] and considers only prime
numbers for q (since matrix multiplication is too slow for prime powers).

1 https://github.com/YuvShap/CoVerD
2 https://github.com/YuvShap/calzone
3 https://github.com/eth-sri/eran
4 https://ljcr.dmgordon.org/cover/table.html

https://github.com/YuvShap/CoVerD
https://github.com/YuvShap/calzone
https://github.com/eth-sri/eran
https://ljcr.dmgordon.org/cover/table.html

18 Y. Shapira et al.

0 2 4 6 8
Images

0
50

100
150
200
250
300

Ti
m

e
(m

in
ut

es
)

MNIST 6×200_PGD t=4
x1.51 NR, x3.23 R
CoVerD
Calzone

0 2 4 6 8
Images

0
50

100
150
200
250
300

Ti
m

e
(m

in
ut

es
)

MNIST ConvSmallPGD t=5
x2.12 NR, x5.25 R
CoVerD
Calzone

0 2 4 6 8
Images

0
50

100
150
200
250
300

Ti
m

e
(m

in
ut

es
)

MNIST ConvMedPGD t=5
x2.52 NR, x5.04 R
CoVerD
Calzone

0 2 4 6 8
Images

0
50

100
150
200
250
300

Ti
m

e
(m

in
ut

es
)

MNIST ConvBig t=3
x1.43 R

CoVerD
Calzone

0 2 4 6
Images

0
40
80

120
160
200
240
280

Ti
m

e
(m

in
ut

es
)

FASHION ConvMedPGD t=4
x0.83 NR, x2.88 R
CoVerD
Calzone

0 2 4 6 8
Images

0
50

100
150
200
250
300

Ti
m

e
(m

in
ut

es
)

CIFAR10 ConvSmallPGD t=3
x1.96 NR, x1.60 R
CoVerD
Calzone

Fig. 6: CoVerD vs. Calzone on Calzone’s most challenging benchmarks.

Comparison to Calzone We begin by evaluating CoVerD on Calzone’s bench-
marks (i.e., the same networks, images and timeouts) for t ≥ 3. Figure 6 shows
the comparison for the most challenging benchmarks of Calzone, and Figure 7
shows comparisons for t = 4 (the plots for t = 3 are shown in [31, Appendix
A]). For a given network and t, the plot shows the execution time in minutes of
CoVerD and Calzone for every t-ball. The x-axis orders the t-balls by CoVerD’s
output: non-robust (in light red background), robust (in light green background),
and timeout (in light blue background, e.g., Figure 7, top). Within each section,
the t-balls are sorted by their execution time for clearer visuality. Timeouts, of
CoVerD or Calzone, are shown by bars reaching the red horizontal line. The lower
part of each bar shows in a lighter color the execution time of the initial sampling
(unless it is too short to be visible in the plot). The sampling time is highlighted
since Calzone and CoVerD sample slightly differently: Calzone samples 400 sets
of size k, for every k ≤ 99, while CoVerD samples up to k ≤ 200 and reduces
the number of samples after observing ten k values whose average success rate
is zero. We note that the other computations of the planning component take a
few seconds. The plots’ titles include the speedup in the average analysis time
of CoVerD over Calzone for non-robust t-balls (NR) and for robust t-balls (R).

The plots show that, on the most challenging benchmarks (Figure 6), CoVerD
is always faster than Calzone, except for two non-robust t-balls which CoVerD

completes their analysis within 140 seconds. In the plots of Figure 7, CoVerD
is always faster than Calzone except for thirteen 4-balls whose analysis termi-
nates within seven minutes by both verifiers. In the other plots (Figure 9 in [31,
Appendix A]), where t = 3, Calzone is sometimes faster, but in these cases the
analysis time is typically short. In other words, the significance of CoVerD is
in shortening the analysis time of t-balls with long analysis time. On average,
CoVerD is faster than Calzone in verifying robust t-balls by 1.3x for t = 3, by
2.8x for t = 4, and by 5.1x for t = 5.

Boosting Few-Pixel Robustness Verification via Covering Verification Designs 19

0 10 20 30 40
Images

0
10
20
30
40
50
60

Tim
e (

m
inu

te
s)

MNIST ConvSmall t=4
x4.24 NR, x2.86 R

CoVerD
Calzone

0 10 20 30 40
Images

0
10
20
30
40
50
60

Tim
e (

m
inu

te
s)

MNIST ConvSmallPGD t=4
x2.11 NR, x2.25 R

CoVerD
Calzone

0 10 20 30 40
Images

0
10
20
30
40
50
60

Tim
e (

m
inu

te
s)

MNIST ConvMedPGD t=4
x0.80 NR, x2.58 R

CoVerD
Calzone

0 5 10 15 20 25 30 35 40
Images

0
10
20
30
40
50
60

Tim
e (

m
inu

te
s)

FASHION ConvSmallPGD t=4
x2.89 NR, x3.05 R

CoVerD
Calzone

Fig. 7: CoVerD vs. Calzone for t = 4.

Challenging benchmarks Next, we show more challenging benchmarks than Cal-
zone. We evaluate the robustness of three networks for t-balls with larger values
of t than Calzone considers, for t = 5 and for t = 6 (we remind that Calzone is
evaluated for t ≤ 5). Similarly to Calzone’s most challenging benchmarks, these
benchmarks evaluate CoVerD for ten images (misclassified images are discarded)
and a five hour timeout. Figure 8 shows CoVerD’s analysis time. CoVerD com-
pletes the analysis for 73% t-balls. Further, it verifies robustness in some 6-balls
within 42 minutes. As before, CoVerD is significantly faster for non-robust t-balls.

We provide additional statistics on CoVerD in [31, Appendix A].

6 Related Work

In this section, we discuss the closest related work.

20 Y. Shapira et al.

0 2 4 6 8
Images

0
50

100
150
200
250
300

Ti
m

e
(m

in
ut

es
)

MNIST ConvSmall t=5

0 2 4 6
Images

0
50

100
150
200
250
300

Ti
m

e
(m

in
ut

es
)

FASHION ConvSmallPGD t=5

0 2 4 6 8
Images

0
50

100
150
200
250
300

Ti
m

e
(m

in
ut

es
)

MNIST ConvSmallPGD t=6

Fig. 8: CoVerD’s new benchmarks.

Robustness verification of neural networks Many works propose robustness ver-
ifiers for neural networks. Most works focus on local robustness in L∞ neighbor-
hoods, defined by a series of intervals [25,34,32,13,21,2,37,36,12]. Some verifiers
provide a complete analysis, i.e., they determine whether a network is robust in
the given neighborhood [34,21,12]. These approaches typically rely on constraint
solving (SAT/SMT solvers or MILP solvers) and thus they often do not scale to
large networks. Incomplete verifiers scale the analysis by over-approximating the
non-linear computations of the network (e.g., the activation functions) by linear
approximations or abstract domains [25,32,13,36]. Several local robustness veri-
fiers address L2-balls, e.g., by computing a bound on the network’s global or local
Lipschitz constant [22,19], or L1-balls [38,41]. Other approaches analyze robust-
ness in Lp-balls for p ∈ {0, 1, 2,∞} using randomized smoothing [6,39,23,28,11],
providing probabilistic guarantees. To the best of our knowledge, Calzone [30]
is the first work to deterministically verify local robustness in L0-balls. Other
works prove robustness in neighborhoods defined by high-level features [20,24,3].

Covering and combinatorial designs CVD is related to several combinatorial de-
signs: the combinatorial design defined by [27], covering designs [16] and bal-
anced incomplete block designs [7]. Covering designs, in particular finite geome-
try coverings, have been leveraged in various domains, including file information
retrieval [27], file organization [1] and coding theory [5]. General combinatorial
designs have also been leveraged in various domains in computer science [8].

7 Conclusion

We present CoVerD, an L0 robustness verifier for neural networks. CoVerD boosts
the performance of a previous L0 robustness verifier by employing several ideas.
First, it relies on a covering verification design (CVD), a new combinatorial design
partially inducing a projective geometry covering. Second, it chooses between
candidate CVDs without constructing them but only predicting their block size
distribution. Third, it constructs the chosen CVD on-the-fly to keep the memory
overhead minimal. We evaluate CoVerD on fully-connected and convolutional
networks. We show that it boosts the performance of proving a network’s ro-
bustness to at most t perturbed pixels on average by 2.8x, for t = 4, and by 5.1x,
for t = 5. For t = 6, CoVerD sometimes proves robustness within 42 minutes.

Boosting Few-Pixel Robustness Verification via Covering Verification Designs 21

References

1. Abraham, C., Ghosh, S., Ray-Chaudhuri, D.: File organization schemes based on
finite geometries. Information and Control 12(2), 143–163 (1968)

2. Anderson, G., Pailoor, S., Dillig, I., Chaudhuri, S.: Optimization and abstraction:
a synergistic approach for analyzing neural network robustness. In: Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI (2019)

3. Balunovic, M., Baader, M., Singh, G., Gehr, T., Vechev, M.T.: Certifying geometric
robustness of neural networks. In: Advances in Neural Information Processing Sys-
tems 32: Annual Conference on Neural Information Processing Systems, NeurIPS
(2019)

4. Carlini, N., Wagner, D.A.: Towards evaluating the robustness of neural networks.
In: IEEE Symposium on Security and Privacy, SP (2017)

5. Chan, A., Games, R.: (n,k,t))-covering systems and error-trapping decoding (cor-
resp.). IEEE Transactions on Information Theory 27(5), 643–646 (1981)

6. Cohen, J., Rosenfeld, E., Kolter, J.Z.: Certified adversarial robustness via random-
ized smoothing. In: Proceedings of the 36th International Conference on Machine
Learning, ICML. vol. 97. PMLR (2019)

7. Colbourn, C.J., Dinitz, J.H. (eds.): Handbook of Combinatorial Designs. Chapman
and Hall/CRC, 2nd edn. (2006). https://doi.org/10.1201/9781420010541

8. Colbourn, C.J., van Oorschot, P.C.: Applications of combinatorial designs in com-
puter science. ACM Comput. Surv. 21(2), 223–250 (jun 1989)

9. Croce, F., Andriushchenko, M., Singh, N.D., Flammarion, N., Hein, M.: Sparse-
rs: A versatile framework for query-efficient sparse black-box adversarial attacks.
In: Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI Thirty-Fourth
Conference on Innovative Applications of Artificial Intelligence, IAAI , The Twel-
veth Symposium on Educational Advances in Artificial Intelligence, EAAI. AAAI
Press (2022)

10. Croce, F., Hein, M.: Mind the box: l1-apgd for sparse adversarial attacks on im-
age classifiers. In: Proceedings of the 38th International Conference on Machine
Learning, ICML. PMLR (2021)

11. Dvijotham, K.D., Hayes, J., Balle, B., Kolter, J.Z., Qin, C., György, A., Xiao,
K., Gowal, S., Kohli, P.: A framework for robustness certification of smoothed
classifiers using f-divergences. In: 8th International Conference on Learning Rep-
resentations, ICLR. OpenReview.net (2020)

12. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks.
In: Automated Technology for Verification and Analysis - 15th International Sym-
posium, ATVA. Lecture Notes in Computer Science, vol. 10482. Springer (2017)

13. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.T.: AI2: safety and robustness certification of neural networks with abstract
interpretation. In: IEEE Symposium on Security and Privacy, SP (2018)

14. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016), http:
//www.deeplearningbook.org

15. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. In: 3rd International Conference on Learning Representations, ICLR
(2015)

16. Gordon, D.M., Kuperberg, G., Patashnik, O.: New constructions for covering de-
signs. J. COMBIN. DESIGNS 3, 269–284 (1995)

https://doi.org/10.1201/9781420010541
http://www.deeplearningbook.org
http://www.deeplearningbook.org

22 Y. Shapira et al.

17. Grosse, K., Papernot, N., Manoharan, P., Backes, M., McDaniel, P.D.: Adversar-
ial perturbations against deep neural networks for malware classification. CoRR
abs/1606.04435 (2016)

18. Hostetter, M.: Galois: A performant NumPy extension for Galois fields (11 2020),
https://github.com/mhostetter/galois

19. Huang, Y., Zhang, H., Shi, Y., Kolter, J.Z., Anandkumar, A.: Training certifiably
robust neural networks with efficient local lipschitz bounds. In: Advances in Neural
Information Processing Systems 34: Annual Conference on Neural Information
Processing Systems NeurIPS (2021)

20. Kabaha, A., Drachsler-Cohen, D.: Boosting robustness verification of semantic fea-
ture neighborhoods. In: Static Analysis - 29th International Symposium, SAS. Lec-
ture Notes in Computer Science, vol. 13790. Springer (2022)

21. Katz, G., Barrett, C.W., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: An
efficient SMT solver for verifying deep neural networks. In: Computer Aided Veri-
fication - 29th International Conference, CAV (2017)

22. Leino, K., Wang, Z., Fredrikson, M.: Globally-robust neural networks. In: Proceed-
ings of the 38th International Conference on Machine Learning, ICML. Proceedings
of Machine Learning Research, vol. 139. PMLR (2021)

23. Li, B., Chen, C., Wang, W., Carin, L.: Certified adversarial robustness with ad-
ditive noise. In: Advances in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems, NeurIPS (2019)

24. Mohapatra, J., Weng, T., Chen, P., Liu, S., Daniel, L.: Towards verifying robustness
of neural networks against A family of semantic perturbations. In: IEEE/CVF
Conference on Computer Vision and Pattern Recognition, CVPR (2020)

25. Müller, C., Serre, F., Singh, G., Püschel, M., Vechev, M.T.: Scaling polyhedral
neural network verification on gpus. In: Proceedings of Machine Learning and
Systems MLSys (2021)

26. Papernot, N., McDaniel, P.D., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The
limitations of deep learning in adversarial settings. In: IEEE European Symposium
on Security and Privacy, EuroS&P (2016)

27. Ray-Chaudhuri, D.K.: Combinatorial information retrieval systems for files. SIAM
J. Appl. Math. 16(5), 973–992 (sep 1968)

28. Salman, H., Li, J., Razenshteyn, I.P., Zhang, P., Zhang, H., Bubeck, S., Yang,
G.: Provably robust deep learning via adversarially trained smoothed classifiers.
In: Wallach, H.M., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E.B.,
Garnett, R. (eds.) Advances in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems, NeurIPS. pp. 11289–11300
(2019)

29. Schönheim, J.: On coverings. Pacific Journal of Mathematics 14(4), 1405 – 1411
(1964)

30. Shapira, Y., Avneri, E., Drachsler-Cohen, D.: Deep learning robustness verification
for few-pixel attacks. Proc. ACM Program. Lang. 7(OOPSLA1) (2023)

31. Shapira, Y., Wiesel, N., Shabelman, S., Drachsler-Cohen, D.: Boosting few-pixel
robustness verification via covering verification designs. CoRR abs/2405.10924
(2024)

32. Singh, G., Gehr, T., Püschel, M., Vechev, M.T.: An abstract domain for certifying
neural networks. PACMPL 3(POPL) (2019)

33. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I.J.,
Fergus, R.: Intriguing properties of neural networks. In: 2nd International Confer-
ence on Learning Representations, ICLR (2014)

https://github.com/mhostetter/galois

Boosting Few-Pixel Robustness Verification via Covering Verification Designs 23

34. Tjeng, V., Xiao, K.Y., Tedrake, R.: Evaluating robustness of neural networks with
mixed integer programming. In 7th International Conference on Learning Repre-
sentations, ICLR (2019)

35. Todorov, D.: Combinatorial coverings. Ph.D. thesis, PhD thesis, University of Sofia,
1985 (1985)

36. Wang, S., Zhang, H., Xu, K., Lin, X., Jana, S., Hsieh, C., Kolter, J.Z.: Beta-crown:
Efficient bound propagation with per-neuron split constraints for neural network
robustness verification. In: Advances in Neural Information Processing Systems 34:
Annual Conference on Neural Information Processing Systems (2021)

37. Wu, H., Ozdemir, A., Zeljic, A., Julian, K., Irfan, A., Gopinath, D., Fouladi, S.,
Katz, G., Pasareanu, C.S., Barrett, C.W.: Parallelization techniques for verifying
neural networks. In: Formal Methods in Computer Aided Design, FMCAD. IEEE
(2020)

38. Wu, Y., Zhang, M.: Tightening robustness verification of convolutional neural net-
works with fine-grained linear approximation. In: Thirty-Fifth AAAI Conference
on Artificial Intelligence, AAAI. pp. 11674–11681. AAAI Press (2021)

39. Yang, G., Duan, T., Hu, J.E., Salman, H., Razenshteyn, I.P., Li, J.: Randomized
smoothing of all shapes and sizes. In: Proceedings of the 37th International Con-
ference on Machine Learning, ICML. Proceedings of Machine Learning Research,
vol. 119. PMLR (2020)

40. Yuviler, T., Drachsler-Cohen, D.: One pixel adversarial attacks via sketched pro-
grams. Proc. ACM Program. Lang. 7(PLDI) (2023)

41. Zhang, H., Weng, T., Chen, P., Hsieh, C., Daniel, L.: Efficient neural network
robustness certification with general activation functions. In: Advances in Neural
Information Processing Systems 31: Annual Conference on Neural Information
Processing Systems, NeurIPS (2018)

	Boosting Few-Pixel Robustness Verification via Covering Verification Designs

