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Abstract. Analyzing the robustness of neural networks is crucial for
trusting them. The vast majority of existing works focus on networks’
robustness in ϵ-ball neighborhoods, but these cannot capture complex
robustness specifications. We propose MaRVeL, a system for computing
maximal non-uniform robust specifications that maximize a target norm.
The main idea is to employ oracle-guided numerical optimization, thereby
leveraging the efficiency of a numerical optimizer as well as the accuracy of
a non-differentiable robustness verifier, acting as the oracle. The optimizer
iteratively submits to the verifier candidate specifications, which in turn
returns the closest inputs to the decision boundaries. The optimizer
then computes their gradients to guide its search in the directions the
specification can expand while remaining robust. We evaluate MaRVeL on
several datasets and classifiers and show that its specifications are larger
by 5.1x than prior works. On a two-dimensional dataset, we show that
the average diameter of its specifications is 93% of the optimal average
diameter, whereas the diameter of prior works’ specifications is only 26%.

1 Introduction

Neural networks are susceptible to adversarial examples [14,21,48,37,46,15]. To
understand the robustness level of neural networks, many works verify local
robustness [43,28,34,18,3,31,41,38]. These works focus on analyzing the network’s
robustness at an ϵ-ball centered at a given input, where every input entry can
be perturbed by up to ±ϵ. However, focusing only on this kind of neighborhood
hinders the overall robustness level of the network. To illustrate, consider Figure 1
showing the decision boundaries of a small network (the black curves), taking
two-dimensional inputs, and an input (the red dot). Its maximal ϵ-ball is bounded
by the closest decision boundary and thus it is quite small (the blue square).
This is because an ϵ-ball uniformly bounds all perturbations by the same ϵ.

This gave rise to works that compute maximal non-uniform robust neigh-
borhoods [26,25]. These neighborhoods are defined by interval specifications,
generalizing ϵ-balls, where each input entry is bounded by an interval. A robust
interval specification is maximal if expanding any interval results in including
an adversarial example. In other words, every interval is approaching a deci-
sion boundary. To pick among the multiple maximal robust specifications, it is
common to maximize a given size metric (e.g., the L1 or L2 norm). Computing
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Fig. 1: A comparison of MaRVeL’s maximal non-uniform specification to the
maximal (uniform) ϵ-ball, the optimal non-uniform specification (computed by a
naive approach), and the maximal non-uniform specification computed by [25].

maximal non-uniform specifications is challenging because (1) the search space is
exponentially large and (2) determining whether an interval specification belongs
to this space, i.e., whether it is robust, requires to call a robustness verifier, which
takes non-negligible time. A naive optimal approach begins by computing all
decision boundaries around the given input using a grid search. Accordingly, it
computes all maximal robust interval specifications and returns the specification
maximizing the size metric. However, this approach is highly time-consuming and
impractical if the input dimension is high. Figure 1 shows an optimal non-uniform
specification (the dashed yellow rectangle).

Existing works propose efficient approaches to compute maximal non-uniform
specifications [26,25]. These approaches rely on numerical optimization, to search
in the large space, and on an incomplete robustness analysis, to determine robust-
ness of candidate specifications. This analysis overapproximates the network’s
computation with differentiable linear functions and thus it scales well to large
networks and is amenable to first-order optimization. However, incomplete analy-
sis suffers from precision loss. Hence, their specifications are not always maximal
and are quite small. Figure 1 shows the maximal non-uniform specification com-
puted by [25] (the dashed green rectangle). It is significantly smaller than the
optimal specification and it does not reach any decision boundary. This raises
the question: Can we efficiently compute optimal maximal robust specifications?

We present MaRVeL (Maximal Robustness Verification of IntervaL specifi-
cations). Like prior works, MaRVeL relies on a numerical optimizer to look for a
robust specification maximizing a given size metric. Unlike prior works, it relies
on a MILP robustness verifier [38], which provides a more accurate analysis but
is not differentiable. To employ first-order optimization, we propose a novel way
to compute the analysis’ gradient from the set of weakest points. These are inputs
contained in the specification that are the closest to the decision boundaries, and
they are computed during the robustness analysis. Based on this idea, MaRVeL
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employs oracle-guided numerical optimization. At each iteration, it submits a
specification to the robustness MILP verifier to obtain the weakest points. Accord-
ingly, it computes the gradient and constructs the next specification. MaRVeL
also employs counterexample-guided synthesis (CEGIS) to prune the search space
based on non-robust specifications. If the verifier determines a specification is
non-robust (i.e., it contains an adversarial example), then MaRVeL prunes the
search space by restricting the relevant interval bounds. Figure 1 shows the
specification computed by MaRVeL (the red rectangle), which is maximal and its
average diameter is only 7% smaller than that of the optimal specification.

We evaluate MaRVeL on several benchmarks and compare to prior works [26,25].
First, we consider the two-dimensional synthetic dataset of [26] and show that
MaRVeL’s specifications are maximal and their average diameters is 93% of the
average diameters of the optimal specifications, whereas the average diameters
of prior works’ specifications are at most 26%. Second, we consider popular
datasets (MNIST, Fashion-MNIST, CIFAR-10, and Contagio/Virustotal [7,40])
and several networks, including convolutional networks. Results show that the
average diameter of MaRVeL’s specifications is 5.1x larger than that of prior
works’ specifications. We further show that the CEGIS component leads to 1.8x
larger average diameters. The execution time of MaRVeL is 19.9x longer than that
of prior works and 6.5x longer if MaRVeL terminates upon the first non-robust
specification. The longer execution time is mostly because MaRVeL relies on a
more accurate verifier. Lastly, we show that MaRVeL’s specifications identify
robustness attributes of the networks that ϵ-balls cannot identify and even prior
works’ specifications do not identify.

2 Preliminaries

In this section, we provide background on network classifiers and local robustness.

Neural network classifiers Given an input domain Rd and a set of classes C =
{1, . . . , c}, a classifier maps inputs to a score vector over the possible classes
D : Rd → Rc. We focus on classifiers in which every input entry has a minimum
and maximum domain value. A fully-connected network consists of L layers. The
first layer z0 takes as input a vector from Rd, denoted x, and it passes the input as
is to the next layer (i.e., z0,k = xk). The last layer outputs a vector, denoted D(x),
consisting of a score for each class in C. The classification of the network for input
x is the class with the highest score, c′ = argmax(D(x)). The layers are functions,
denoted h1, h2, . . . , hL, each taking as input the output of the preceding layer. The
network’s function is the composition of the layers: D(x) = hL(hL−1(· · · (h1(x)))).
The function of layer m is defined by a set of processing units called neurons,
denoted zm,1, . . . , zm,km . Each neuron takes as input the outputs of all neurons
in the preceding layer and outputs a real number. The output of layer m is
the vector (zm,1, . . . , zm,km

)T consisting of all its neurons’ outputs. A neuron
zm,k has a weight for each input wm,k,k′ and a single bias bm,k. Its function
is computed by first computing the sum of the bias and the multiplication of
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every input by its respective weight: ẑm,k = bm,k +
∑km−1

k′=1 wm,k,k′ · zm−1,k′ .
This output is then passed to an activation function σ to produce the output
zm,k = σ(ẑm,k). Activation functions are typically non-linear functions. In this
work, we focus on the ReLU activation function, ReLU(ẑ) = max(0, ẑ). We note
that, for simplicity’s sake, we explain our approach for fully-connected networks,
but it extends to other architectures, e.g., convolutional networks.

Local robustness A safety property for neural networks that has drawn a lot
of interest is local robustness. A network is locally robust at a given input if it
does not change the classification under a given type of perturbation. Formally,
given a classifier D, an input x and a neighborhood containing x, I(x) ⊆ Rd,
we say D is robust at I(x) if: ∀x′ ∈ I(x). argmax(D(x′)) = argmax(D(x)).
There are many robustness verifiers for neural networks. Most of them can
analyze hyperrectangular neighborhoods, where each input entry (i.e., pixel, if
the input is an image) is bounded in an interval [l, u], where l, u ∈ R. These
neighborhoods capture popular robustness neighborhoods, e.g., ϵ-balls. Among
the robustness verifiers, some are complete, i.e., for every neighborhood, they
return robust or non-robust, while others are incomplete, i.e., they may also return
unknown. Many complete verifiers rely on constraint solvers, e.g., SAT-solvers [10],
SMT-solvers [18], or mixed-integer linear programming (MILP) solvers [38].
Incomplete verifiers often employ linear or convex relaxations to the network’s
non-linear computations to scale the analysis [29,34,1,41,43,3,13,33,31,32,28].
While complete verifiers tend to be slower than incomplete verifiers, today’s
MILP solvers are very efficient and can reason about relatively large networks.
They also provide a natural way to trade-off accuracy with scalability, as we
explain in Section 5.1.

3 Problem Definition

In this section, we define the problem of maximal robust specifications for neural
networks. We then discuss the challenges, prior work and the current gap.

Robustness specifications We focus on interval specifications defining hyper-
rectangular neighborhoods. An interval specification is a sequence of intervals,
each corresponding to an input entry and constraining its possible values. For-
mally, interval specifications are parameterized by an input x and take the form
of: Il1,u1,...,ld,ud

(x) = [l1, u1], . . . , [ld, ud], where li ≤ xi ≤ ui, for every i ∈ [d].
The specification’s neighborhood contains all inputs bounded by the intervals:
NIl1,u1,...,ld,ud

(x) = {x′ | ∀i ∈ [d]. x′
i ∈ [li, ui]}. When it is clear from the context,

we write I. If x′ ∈ NI(x), we write x′ ∈ I and say x′ is contained in I. We say I
is a robustness specification for a classifier D if D is robust at NI(x). Our goal is
to compute maximal robust specifications maximizing a given norm. Formally:

Definition 1 (Problem Definition). Given a classifier D, a correctly classified
input x and its class cx, and a differentiable almost everywhere p-norm || · ||p (e.g.,
p = 1, 2, . . .), the goal is to compute a specification Il1,u1,...,ld,ud

(x) satisfying:
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1. D is robust at NIl1,u1,...,ld,ud
(x).

2. For every interval specification I ′ expanding I, D is not robust at NI′(x).
3. Il1,u1,...,ld,ud

(x) maximizes || · ||p, among specifications meeting 1 & 2.

This problem is challenging for several reasons. First, it involves searching
in high-dimensional space: a specification is a vector in R2d. Second, determin-
ing whether a specification belongs to the search space (namely, whether it
is robust) involves querying a robustness verifier, which takes non-negligible
time. Third, it involves identifying the decision boundaries of the classifier to
determine that the specification is maximal. We note that for (uniform) ϵ-ball
neighborhoods, computing the maximal neighborhood is significantly simpler.
An ϵ-ball specification allows perturbations of each input entry by up to a given
ϵ: Bϵ(x) = [x1 − ϵ, x1 + ϵ], . . . , [xd − ϵ, xd + ϵ]. Namely, an ϵ-ball is defined by
a real number ϵ. Thus, computing the maximal ϵ-ball of a given x is a search
in a one-dimensional space. It can be done using a binary search, where each
candidate ϵ′ is submitted to a robustness verifier. Determining whether an ϵ-ball
specification is maximal is also simpler and does not require estimating the
decision boundaries: the maximal robust ϵ-ball is the one maximizing ϵ. However,
as we demonstrate later, considering the more expressive interval specifications
leads to revealing a more accurate perspective on the classifier’s robustness level.

Prior work and current gap Two works address the problem of maximal robust
interval specifications [26,25]. These works assume an incomplete robustness
verifier that relies on linear relaxations to bound each neuron by linear bounds.
They leverage the linear bounds to overapproximate the classifier’s function D(x)
as a linear function of the inputs D̃(x). This allows them to search for a maximal
specification using numerical optimization guided by the gradient of D̃. While
these approaches compute larger specifications than their counterpart maximal
ϵ-ball specifications (as we show in Section 6), they suffer from precision loss. The
precision loss stems both from the accumulated overapproximation error of the
incomplete verifier’s analysis and the inaccuracy of computing the gradient based
on D̃(x) and not the actual classifier’s function D(x). As a result, the computed
specifications are not maximal. As demonstrated in Figure 1, existing approaches
compute non-maximal specifications, which are also significantly smaller than
the optimal specification. We note that although Figure 1 demonstrates one of
the existing approaches, similar results are obtained for the other one. In this
work, we propose a new approach for computing maximal robust specifications.

4 Key Idea: An Oracle-Guided Numerical Optimization

In this section, we present our key idea for computing maximal robust specifi-
cations, on which we later build to design MaRVeL. Our goal is to compute a
maximal robust specification I(x) maximizing a given norm || · ||p. To this end, we
rely on a MILP verifier, which loses less precision than verifiers relying on linear
relaxations. However, the computation of this verifier is not differentiable and
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thus not amenable to numerical optimization, as proposed by prior works [26,25].
On the other hand, numerical optimization is very efficient for (differentiable)
maximization problems, and thus we wish to leverage it for searching for candi-
date specifications. We draw inspiration from program synthesis and propose to
rely on oracle-guided numerical optimization.

In oracle-guided numerical optimization, we have two entities: the numerical
optimizer and the verifier, which interact iteratively. At every iteration, the
numerical optimizer computes a new candidate specification and then submits
it to the verifier. The verifier checks whether the specification defines a robust
neighborhood and returns information to the optimizer that guides it in which
directions the current specification can expand (if it is robust) or should shrink
(if it is not robust). The process terminates when the optimizer does not have
more directions to expand. It then returns the last candidate specification that is
robust, according to the verifier. We next formalize the optimization problem
that the optimizer solves to compute a maximal robust specification. We then
explain at a high-level how the optimizer solves the optimization problem and
describe the information provided by the verifier to guide the optimization.

4.1 The Optimization Problem

Ideally, we would like the optimizer to solve a constrained optimization problem
over specifications, where the maximization function is the p-norm of the specifi-
cation and the constraints are that the specification is valid (i.e., contains x) and
robust. We note that, in this section, we ignore the domain constraints, bounding
the input entries by minimum and maximum values, because they are enforced
differently (explained in Section 5.3). Expressing that the specification is valid is
straightforward: we require xi ≥ li and xi ≤ ui, for every i ∈ [d]. Expressing that
the specification is robust is more subtle because it requires to enforce that the
network classifies every input contained in the specification as cx (i.e., x’s class):

∀x′ ∈ I(x). class(D(x′)) = cx

However, this constraint is not differentiable, because we rely on a MILP-based
encoding of the network’s computation, to avoid precision loss. Thus, we rewrite
this constraint into a term, which is easier for differentiation, preserving the
constraint’s semantics. We begin with an equivalent constraint requiring that the
difference between cx’s score and the maximal score of any other class is positive:

∀x′ ∈ I(x). D(x′)cx −max{D(x′)c′ | c′ ̸= cx} > 0

Next, to eliminate the for-all operator, which is generally not supported by
numerical optimizers, we rewrite this constraint by requiring that the minimum
value of the above difference is positive:

min{D(x′)cx −max{D(x′)c′ | c′ ̸= cx} | x′ ∈ I(x)} > 0

This constraint has the same semantics: if the minimal value of this difference is
positive, then the specification is robust, and otherwise, it is not robust. We call
the minimal difference the robustness level. We next define it formally.
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Definition 2 (Robustness Level). Given a classifier D, a correctly classified
input x and its class cx, and a specification I(x), the robustness level of I(x) is
RL(I(x)) = min {D(x′)cx −max{D(x′)c′ | c′ ̸= cx} | x′ ∈ I(x)}.

Lastly, since such constraint is challenging for a numerical optimizer, we relax
it by adding the robustness level as an additional term to the maximization
function (such relaxation is common, for example, to compute adversarial ex-
amples [4,6,39,37]). By aiming to maximize the robustness level, the optimizer
guides its search towards robust specifications. Overall, the optimizer computes
a maximal robust specification by solving the following optimization problem:

max
Il1,u1,...,ld,ud

||Il1,u1,...,ld,ud
||p + λ ·RL(Il1,u1,...,ld,ud

)

subject to

xi ≥ li ∀i ∈ [d]

xi ≤ ui ∀i ∈ [d]

(1)

Here, λ is the balancing term, which we define in Section 5.2. This constrained
problem aims to maximize both the specification’s size and its robustness level.

We note that although an optimal solution to this problem may be a non-
robust specification, this does not affect the overall soundness of our approach.
This is because every candidate is submitted to a sound verifier, and eventually
we return the maximal specification that is robust, according to the verifier.

4.2 Solving the Optimization Problem

To solve the optimization problem, the optimizer runs stochastic gradient descent
(SGD). At every SGD iteration, the optimizer computes the gradient of the
maximization problem and accordingly updates the current specification by a
small step: I 7→ I + η · ∇(||I||p + λ ·RL(I)). Afterwards, it clips the specification
to respect the validity constraints xi ≥ li and xi ≤ ui. The main question is
how to compute the gradient of the maximization function. Since the norm is
differentiable almost everywhere, the challenge is only in computing the gradient
of RL(I). Our idea is to rely on the robustness level that the MILP verifier
computes as part of its analysis, and in particular on the inputs defining the
robustness level. That is, the inputs minimizing the difference between the score
of cx and the maximal score of any other class. We call these inputs the weakest
points. We next define them formally.

Definition 3 (Weakest Points). Given a classifier D, a correctly classified
input x and its class cx, and a specification I(x), the weakest points of I(x) is the

following set of inputs Ŵ ⊆ Rd: Ŵ = {x′ ∈ I(x) | RL(x′) = RL(I(x))}, where
for every x′ ∈ Rd, we define RL(x′) = D(x′)cx −max{D(x′)c′ | c′ ̸= cx}.

We next explain how the weakest points enable the optimizer to compute the
gradient of RL(I). By the definition of robustness level, we have RL(I) = RL(Ŵ).

In particular, their gradients are equal: ∇RL(I) = ∇RL(Ŵ). Thus, to compute
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the gradient of RL(I), the optimizer computes the gradients of the weakest
points, which is typically a very small set. Computing the gradient at a single
point x′ ∈ Ŵ is a simple standard computation involving a forward pass and
a backward pass over the classifier D. The gradient of Ŵ is the average of
the weakest points’ gradients. In practice, the gradient of the weakest points
may direct to other decision boundaries, which are close to inputs with a low
robustness level, but not the lowest. To avoid it, we identify the set of classes
with a low robustness level C ′ ⊆ C \ {cx} and obtain from the verifier’s analysis
the weakest points of every class c′ ∈ C ′, namely the inputs minimizing the
robustness level for every class in C ′. Formally, given the set of classes with
a low robustness level C ′, its set of weakest points is W = {Wc′ | c′ ∈ C ′},
where for c′ ∈ C ′, Wc′ = {x′ ∈ I(x) | D(x′)cx − D(x′)c′ = RLc′(I(x))} and
RLc′(I(x)) = min {D(x′)cx −D(x′)c′ | x′ ∈ I(x)}. The optimizer constructs a
weighted gradient from all the points in

⋃
W (defined in Section 5.2).

5 MaRVeL: Computing Maximal Robust Specifications

In this section, we present MaRVeL, our algorithm to compute maximal robust
interval specifications. MaRVeL builds on oracle-guided numerical optimization
(Section 4). Figure 2 shows its operation. MaRVeL takes as arguments a clas-
sifier D, an input x and its class cx. Throughout execution, it maintains three
specifications: the current specification I, the last verified robust specification Ir,
and the termination specification If , keeping the maximal bounds. Initially, I
is the specification containing only x, and Ir and If are undefined. MaRVeL
operates iteratively to maximize the optimization problem of Equation (1). It
begins at the Verify step. This step begins with a call to a fast incomplete verifier
to identify the set of classes with low robustness levels C ′. For every c′ ∈ C ′, it
encodes the verification task as a MILP and submits it to a MILP solver. The
solver returns, for every class c′ ∈ C ′, the weakest points and their robustness
level Wc′ . MaRVeL then continues to the Progress step to decide how to advance
the computation. If I is robust, Ir is updated. Otherwise, MaRVeL resets I to the
previous Ir and updates If using CEGIS, to prevent expanding in the maximal
directions. It further updates the balancing factor λ0 (described later), if I is
not sufficiently larger than the previous Ir or if I is not robust. Then, MaRVeL
checks the termination conditions. MaRVeL terminates in one of the following
cases: (1) if x is misclassified (in which case, I is set to an undefined Ir and thus
has ⊥), (2) all bounds are maximal (If has no ⊥), or (3) the balancing factor λ0

is below a predetermined threshold (λ0 < λmin). If MaRVeL does not terminate,
it continues to the Optimize step. This step first computes the specification size’s
gradient, the robustness level’s gradient (from the weakest points), and the value
of λ. Accordingly, it updates I. Lastly, it employs clipping to I based on the
validity constraints (i.e., li ≤ xi ≤ ui) and enforces the bounds in If . When one
of the termination conditions is true, the last robust specification Ir is returned.
We next explain these steps, show an example, and discuss correctness.
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if (| 𝑰 𝒙 |𝒑 − | 𝑰𝒓 𝒙 |𝒑 < 𝒕𝒔𝒊𝒛𝒆
∨ 𝑰 is not robust): 

𝝀𝟎 = 𝜶𝝀𝟎
if 𝑰 is robust: 
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else:  

𝑰𝒇 = CEGIS( 𝑰𝒇, 𝑰, 𝑰𝒓,𝓦)
𝑰 = 𝑰𝒓

𝑪′ = 𝒇𝒂𝒔𝒕 _𝒗𝒆𝒓𝒊𝒇𝒊𝒆𝒓(𝑰, 𝑫, 𝒄𝒙)Classifier 𝑫
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𝜵 𝑰 𝒑

𝜵𝑹𝑳 𝓦
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𝑰𝒓∨ 𝝀𝟎 < 𝝀𝒎𝒊𝒏?𝓦

𝑰 𝒙 = 𝒙𝟏, 𝒙𝟏 , … , 𝒙𝒅, 𝒙𝒅 𝑰𝒓, 𝑰𝒇 = ⊥, ⊥ ,… , [⊥, ⊥]

𝑰 𝒉𝒂𝒔 ⊥

∨ 𝑰𝒇 𝒉𝒂𝒔 𝒏𝒐 ⊥𝑬 = 𝑴𝑰𝑳𝑷 _𝒆𝒏𝒄𝒐𝒅𝒆(𝑰, 𝑫, 𝒄𝒙, 𝑪
′)

𝑫, 𝑰,𝓦𝑰 = 𝑰 + 𝜼 ⋅ (𝜵 𝑰 𝒑 + 𝝀 ⋅ 𝜵𝑹𝑳 𝓦 )
𝑰 = 𝒄𝒍𝒊𝒑(𝑰, 𝒙)

Verify Progress

Optimize

𝒚𝒆𝒔
𝒏𝒐

∀𝒊 ∈ 𝒅 , 𝒊𝒇 𝑰𝒍𝒊
𝒇
≠⊥ ∶ 𝑰𝒍𝒊 = 𝑰𝒍𝒊

𝒇

∀𝒊 ∈ 𝒅 , 𝒊𝒇 𝑰𝒖𝒊
𝒇
≠⊥ : 𝑰𝒖𝒊 = 𝑰𝒖𝒊

𝒇

Fig. 2: MaRVeL: System description.

5.1 The Verify Step

For the verifier, MaRVeL relies on the MILP encoding of an existing MILP-based
robustness verifier [38]. We begin with a short background on its encoding, which
is necessary to understand MaRVeL’s encoding and optimizations, and then
describe MaRVeL’s call to the fast incomplete verifier and the optimizations that
MaRVeL employs.

Background: A MILP robustness verifier The MILP verifier [38] encodes the
robustness analysis as MILPs, which are then submitted to a MILP solver. We
begin by describing the encoding of the network’s computation. Given a network,
the encoding associates to each neuron zm,k the following (we abuse notation,
for simplicity’s sake): (1) a real-valued variable ẑm,k for the affine computation,
(2) a real-valued variable zm,k for the ReLU computation, (3) concrete lower and
upper bounds lm,k, um,k ∈ R, and (4) a boolean variable am,k ∈ {0, 1}. For every
neuron, it adds the following constraints, capturing the neuron’s computation:

ẑm,k = bm,k +

km−1∑
k′=1

wm,k,k′ · zm−1,k′ zm,k ≥ 0 zm,k ≥ ẑm,k

zm,k ≤ um,k · am,k zm,k ≤ ẑm,k − lm,k(1− am,k)

The concrete bounds are computed before encoding the network, for example
using interval arithmetic or a fast incomplete verifier (which, as mentioned,
MaRVeL runs before the MILP verifier). These constraints capture the network’s
computation precisely, without any approximation. Note that because the encod-
ing relies on boolean variables, the overall function is a step function, and thus
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not differentiable. Given an interval specification Il1,u1,...,ld,ud
(x), the encoding

adds the constraints: z0,k ≥ lk and z0,k ≤ uk, for every k ∈ [d]. To encode
robustness of cx with respect to class c′ ̸= cx, i.e., show that the score of cx is
higher than that of c′, it adds a minimization function: min(zL,cx − zL,c′). An
optimal solution to this MILP is the robustness level of c′. The set of inputs
obtaining this robustness level is the set of weakest points of c′, Wc′ . Overall,
to show local robustness, i.e., show robustness of cx with respect to every class
c′ ̸= cx, the verifier submits to a MILP solver |C| − 1 MILPs. If all optimal
solutions (i.e., robustness levels) are positive, the classifier is locally robust at the
given interval specification. Otherwise, it is not robust. That is, this encoding
provides a sound and complete local robustness analysis [38]. In addition to the
robustness levels, the MILP solver can also return the sets of weakest points.

The fast verifier The MILP verifier is generally an efficient approach for exact
analysis. However, since MaRVeL invokes it at every iteration, it becomes highly
time consuming, especially for large networks. Thus, at every iteration, MaRVeL
attempts to reduce the number of MILPs by pruning classes whose robustness
level is not low. Thus, before the MILP encoding, MaRVeL runs DeepPoly [33].
DeepPoly is an incomplete robustness verifier, relying on linear relaxations to scale
the analysis. As part of its analysis, DeepPoly computes, for every output neuron,
real-valued lower and upper bounds bounding the possible values. MaRVeL relies
on these bounds to compute, for every class c′ ̸= cx, a lower bound on the
robustness level. Then, it constructs the set C ′ of all classes whose robustness
level’s lower bound is not positive. Note that the MILP verifier need not check
the other classes to determine local robustness. If C ′ = ∅ (it may happen for very
small specifications), it adds to C ′ the class with the minimal robustness level.

The MILP verifier MaRVeL encodes a MILP for each class in C ′, as described,
and submits them to a MILP solver. To reduce execution times, it employs two
optimizations. First, it employs a partial MILP encoding. That is, it encodes only
part of the neurons using boolean variables, and the rest are overapproximated
with DeepPoly’s linear constraints (which lose precision). This allows MaRVeL
to trade-off precision with scalability. Specifically, MaRVeL limits the number
of neurons that are encoded precisely at every layer to nm (a hyper-parameter).
There are several heuristics to determine which neurons require precise encod-
ing [34,43,41,42]. MaRVeL employs a common heuristic. It picks for every layer
the nm neurons with the largest overapproximation error, i.e., the largest differ-
ence between their upper bound and lower bound, as determined by DeepPoly.
Second, many MILP solvers support anytime computations. Thus, MaRVeL runs
the MILP solver with a predetermined timeout TMILP. If the solver reaches this
timeout, it returns the current optimal solution. We note that these optimizations
do not affect the soundness of MaRVeL, but may reduce its accuracy.

5.2 The Optimize Step

The Optimize step begins by computing the gradient of the maximization function:
||Il1,u1,...,ld,ud

||p + λ ·RL(Il1,u1,...,ld,ud
). This computation follows the description
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at Section 4.2, and we next explain it in detail. The gradient is a vector in
R2d, defining for every li and ui its derivative. Computing the gradient of
∇||I||p is straightforward, for p ≥ 1. For example, if p = 2, namely ||I||2 =∑d

i=1(ui − li)
2, then ∇||I||2 = (2l1 − 2u1, 2u1 − 2l1, . . . , 2ld − 2ud, 2ud − 2ld)

T .
To compute the gradient of the robustness level ∇RL(I), MaRVeL computes
∇RL(W). To this end, it computes for each input x′ ∈ Wc′ , where Wc′ ∈ W, the
gradient of RL(x′). This gradient is ∇x′(zL,cx − zL,c′), and it can be computed
as standard, using a forward pass and a backward pass over the classifier D.
Given the gradient of RL(x′), which is a vector (ẋ′

1, . . . , ẋ
′
d)

T ∈ Rd, MaRVeL
defines for every i ∈ [d] the derivative of li and ui to be ẋ′

i. Theoretically,
the gradient of the points in

⋃
W is the component-wise average. However,

the weakest points of different classes have different robustness levels. Taking
the average gradient assigns the same importance to all points, even if some
are closer to a decision boundary than others. Instead, MaRVeL computes a

weighted average: ∇RL(W) = 1
|
⋃

W|
∑

x′∈
⋃

W
exp(−RL(x′))∑

x̄∈
⋃

W exp(−RL(x̄)) · ∇x′RL(x′).

This weighted average assigns higher weights to the gradients of inputs with lower
robustness levels. Having defined the gradients of each component, the overall
gradient is the sum ∇||I||p + λ · ∇RL(I). This is then normalized, as standard,
by dividing it by its norm: ||∇||. Our balancing term λ is a function of the

gradients’ ratio: λ = λ0 · ||(∇||I||p)||
||(∇RL(I))|| , where λ0 is initialized to a predetermined

factor and decreases during the optimization. To allow the specifications expand
at a reasonable rate, if I is not robust or ||I||p−||Ir||p < tsize, for a threshold tsize,
MaRVeL multiplies λ0 by a constant α ∈ (0, 1). This update directs the optimizer
to assign more weight to the specification’s size term in the next iterations.

Specification update After computing the gradient, the specification update is
a standard SGD step: I 7→ I + η · (∇||I||p + λ · ∇RL(I)), where η is a small
constant. The intuitive meaning of a single step is that MaRVeL updates the
specification with the goal of increasing its size while expanding the bounds away
from the current weakest points. After that, the specification is clipped to satisfy
the validity constraints. Namely, every ui that is smaller than xi is set to xi, and
every li that is greater than xi is set to xi. Then, the specification is aligned with
the maximal and minimal bounds in If . Namely, every ui or li that has a value
in If is set to its value in If . The domain constraints bounding the input entries
by minimum and maximum values are enforced through If , as we next explain.

5.3 CEGIS at the Progress Step

Lastly, we explain the CEGIS operation at the Progress step. Its goal is to leverage
non-robust specifications to identify when MaRVeL reaches maximal bounds
and thereby prevent the optimizer from proposing non-robust specifications.
This operation draws inspiration from counterexample-guided inductive synthesis
(CEGIS), where a program synthesizer prunes its search space after obtaining a
counterexample from the oracle or user [36,17]. As described, if a specification is
not robust, MaRVeL discards it and continues from the last robust specification.
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However, before discarding it, MaRVeL computes a set of maximal bounds and
updates If accordingly. The maximal bounds are computed from the weakest
points that are adversarial examples (if a specification is not robust, some of the
weakest points are adversarial examples). By restricting these bounds, future
specifications will not include these adversarial examples. Moreover, a clever
restriction will also eliminate very close adversarial examples that otherwise will
be discovered in the following iterations, thereby slowing down the computation.

We begin with several observations and afterward explain how MaRVeL lever-
ages them to construct If . Consider two consecutive specifications Irlr1,ur

1,...,l
r
d,u

r
d

and Il1,u1,...,ld,ud
, where Ir is robust and I is not. The MILP verifier computes

for I the set of weakest points. Because I is not robust, at least one of them is
an adversarial example, denoted x′ = (x′

1, . . . , x
′
d)

T . For every i ∈ [d], one of the
following holds: (1) x′

i ∈ (ur
i , ui], (2) x

′
i ∈ [li, l

r
i ), or (3) x

′
i ∈ [lri , u

r
i ]. Because x′

is an adversarial example and Ir is robust, there exists i ∈ [d], for which cases
(1) or (2) hold. We define Bx′ to be the set of bounds satisfying cases (1) or (2):

Bx′ = {Ui | x′
i ∈ (ur

i , ui]} ∪ {Li | x′
i ∈ [li, l

r
i )}

Our first observation is that if, for future specifications, we prohibit any bound in
Bx′ from reaching its respective value in I, then x′ is not part of future specifica-
tions’ neighborhoods. To eliminate all weakest points, it is sufficient to eliminate
a single bound for each of them. Thus, the most permissive restriction on future
specifications is a minimal hitting set over all Bx′ -s. Namely, B = argminB∈B|B|,
where B = {B ⊆ {L1, U1, . . . , Ld, Ud} | ∀x′ ∈

⋃
W. Bx′ = ∅ ∨Bx′ ∩B ̸= ∅}. We

can prove that if MaRVeL removes the most permissive restriction B at every
iteration in which I is not robust, then MaRVeL returns a maximal robust
specification (Section 5.5, Theorem 1).

Our second observation is that, in practice, the most permissive restriction
results in high execution times, especially for high-dimensional specifications. This
is because adversarial examples are not sporadic and often multiple adversarial
examples appear in the same region [8]. Thus, while eliminating a single bound
removes a particular adversarial example, it does not eliminate the adversarial
region. Although eventually all adversarial examples in this region are removed,
it requires many iterations in which Ir is not updated, causing a time waste.

Computing a minimal set of bounds defining adversarial regions is not trivial.
Instead, we overapproximate it with the union of the bounds: B̃ =

⋃
x′∈

⋃
W Bx′ .

While this is the most restrictive approach, we empirically observe that among all
approaches we experimented with, it leads to a minimal number of iterations until
the optimizer again computes a candidate specification which is discovered as
robust. We believe the reason is that the SGD’s step size is very small, and thus if
a bound is included in any Bx′ , it should be restricted. When experimenting with
less restrictive approaches (e.g., computing a minimal hitting set or restricting
bounds based on their frequencies), MaRVeL required many more iterations
to restrict all necessary bounds. During these iterations, Ir remains the same,
because the specifications are not robust. Consequently, when limiting MaRVeL
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Step 1 Step 15 Step 25
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Comparison with optimal
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(g) (h) (i)

Fig. 3: A running example for computing MaRVeL’s specification at Figure 1.

with a one hour timeout, the average diameter of the less restrictive approaches
is at best 80% of the average diameter of the specifications computed with B̃.

MaRVeL builds on these observations to compute the maximal bounds. As
described, it maintains a termination specification If , keeping for each bound a
maximal or a minimal value. Initially, all bounds in If are undefined. At every
iteration in which the verifier determines that I is not robust, If is updated
based on the weakest points that are adversarial examples. To this end, MaRVeL
first computes B̃. Then, for every Ui ∈ B̃, it sets in If at index ui the value Irui

,

and for every Li ∈ B̃, it sets in If at index li the value Irli . While we could set

the bounds in If to the respective values in I minus a small constant, in practice
this does not eliminate the adversarial region. Additionally, because MaRVeL
advances I by small steps, the difference between Irui

and Iui is very small.
We note that If is also updated when bounds reach their maximal or minimal

domain value. For example, assume the input domain is [0, 1]d. If the verifier
determines a specification I is robust, then for every ui = 1 and li = 0 in I, their
respective value in If is updated to 1 or 0 (respectively). This is required to
guarantee termination (Section 5.5, Lemma 1).

5.4 An End-to-End Example

We next exemplify MaRVeL for the specification presented at Figure 1. In this
example, the classifier D is a fully-connected network, taking two-dimensional
inputs in the range [−1, 1] and consisting of three layers, each with ten neurons.
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The input is x = (0.075, 0.93)T and its class is cx = 7. Given these arguments,
MaRVeL computes a maximal robust specification with respect to the L1 norm
(p = 1). Figure 3 visualizes the key steps in MaRVeL’s verification process. Every
figure shows the following. The black curves show the decision boundaries. The
blue square shows the input x. The red rectangle shows the current specification I.
The green dots show the weakest points, and the light blue stars show the weakest
points that are adversarial examples. The gradient is shown as two arrows (to
simplify its visualization): the green arrow shows the gradient of the upper bounds
and the dashed red arrow shows the gradient of the lower bounds.

At step 1, MaRVeL initializes the specification I to contain only the input x:
I1 = [0.075, 0.075], [0.93, 0.93]. It also initializes Ir = If = [⊥,⊥], [⊥,⊥]. The
Verify step runs DeepPoly and determines that only c′ = 8 has to be checked
by the (MILP) verifier. That is, instead of nine MILPs, only one is encoded and
submitted to the verifier. The verifier returns W8 = {x} and its robustness level,
which is positive. Namely, I is robust. No termination condition is true, and
so MaRVeL computes the gradient of W8 = {x}. Accordingly, it expands the
specification. Then, it clips to ensure that the specification contains x. Step 15
shows a very similar scenario only that there are two weakest points for c′ = 8.

At step 25, the verifier returns that I = [0.075, 0.32], [0.75, 1] is robust. Because
one of the bounds reaches its maximal domain value, its respective value in If is
updated: If = [⊥,⊥], [⊥, 1]. The specification is expanded as before.

At step 55, I = [0.075, 0.61], [0.65, 1] and it approaches the decision boundary
of class 8. The weakest point is (0.075, 0.66)T . The gradient of this point directs
to expand I only in the right-up direction (demonstrated also in step 60).

At step 86, I approaches the decision boundary of class 6. The verifier
returns W = {{(0.065, 0.65)T }8, {(0.87, 0.64)T }6}. The first point corresponds
to c′ = 8 and the second point to c′ = 6. At step 89, I is not robust and
one of the weakest points is an adversarial example: (0.88, 0.649)T . MaRVeL
constructs B̃ = {U1, L2} and updates their respective values in If based on their
values in the last Ir: If = [⊥, 0.878], [0.649, 1]. At step 90, I is not robust and
one of the weakest points is an adversarial example: (0.055, 0.649)T . MaRVeL
constructs B̃ = {L1} and updates its respective bound in If based on the
last Ir: If = [0.065, 0.878], [0.649, 1]. At this point, there is no direction that
MaRVeL can expand. Thus, MaRVeL terminates and returns the last robust
specification Ir = [0.065, 0.878], [0.649, 1]. The figure shows that the specification
is maximal: expanding any bound results in including an adversarial example.
Figure 3(i) compares MaRVeL’s specification with the optimal one (the dashed
yellow rectangle), whose average diameter is larger by only 7%.

5.5 Correctness and Running Time

In this section, we discuss correctness and running time analysis.

Correctness By MaRVeL’s operation, it is sound because if it returns a defined
specification (without ⊥), it must have been verified by the MILP verifier, which
provides a sound robustness analysis [38]. Under the following conditions the
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returned specification is maximal: (1) MaRVeL relies on the minimal hitting
set B, (2) the step sizes are small enough (as standard in numerical optimization),
(3) the MILP verifier is precise (i.e., the optimizations of the partial MILP and the
anytime computations do not reduce its accuracy), and (4) MaRVeL terminates
because If has no ⊥. We next formalize this in a theorem.

Theorem 1. Let D, x and cx be arguments to MaRVeL. If MaRVeL relies on
the minimal hitting set, the step sizes are small, the MILP verifier is precise,
and MaRVeL completes because If has no ⊥, then its specification is maximal:
expanding any bound that has not reached its maximal or minimal possible value
results in including an adversarial example.

Proof (Sketch). Assume MaRVeL’s maximization function was max ||I||p. Then,
at every iteration, the gradient is positive for any upper bound and negative for any
lower bound, because an Lp norm is a monotonically increasing function1. Thus, at
every iteration, the SGD step updates the current specification by increasing every
ui and decreasing every li that are not limited by If or the validity constraints.
Thus, if a bound ui stops increasing (or a bound li stops decreasing) and if it
is not because of the validity constraints or because ui has reached its maximal
domain value, then it is because ui prevents an adversarial example. This is
guaranteed since the MILP verifier is precise. Because the step sizes are small,
the bound of ui is maximal (or the bound of li is minimal). Because MaRVeL
relies on the minimal hitting set B, every adversarial example is prevented by
limiting a single bound and no bound can be omitted from B without including
an adversarial example. Thus, if the optimization is completed, it must be that
every bound is preventing an adversarial example or has reached the maximal or
minimal possible value. A similar reasoning applies to our maximization function
with the robustness level, thanks to the adaptive definition of λ0. Recall that if
the specification size increases too slowly or the specification is not robust, then
λ0 decreases. Thereby, MaRVeL assigns more weight to the specification’s size
term. Thus, the optimization process cannot terminate without attempting to
increase every bound, due to the gradient of ||I||p. Hence, if the optimization is
completed, it must be that every bound is preventing an adversarial example or
has reached the maximal or minimal possible value.

If MaRVeL relies on B̃, we provide a lower bound on the number of dimensions
in which the specification is maximal. Every time the specification If is updated,
at least one of Ir’s bounds is maximal, because B̃ is a hitting set. Given all
(disjoint) sets B̃1, . . . , B̃k throughout the execution, the number of maximal
bounds is at least k. This is a very loose lower bound, since in practice, several
bounds tend to be maximal together, thereby inducing an adversarial region.

1 There is an edge case where li = ui, in which case the gradient is zero. There are
standard corrections to guarantee that the gradient is monotonically increasing. For
example, for the L1 norm, which is the one currently supported in our implementation,
the correction replaces the zero gradient by 1 (for ui) or −1 (for li).
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Running time Next, we analyze the running time of MaRVeL. We start with a
lemma guaranteeing termination. Then, we analyze the running time of a single
iteration of MaRVeL.

Lemma 1. For every D, x and cx, MaRVeL terminates.

Proof (Sketch). At every iteration, one of the following holds:
– The current specification is robust: In this case, in most iterations, the size

of the current specification is larger than previous specifications. We note
that it may be that for a small number of iterations it is not the case, but
then λ0 decreases until the specification’s size becomes large enough.

– The current specification is not robust: In this case, at least one of the bounds
is set to a value (if it was ⊥) or is tightened by the respective value in Ir.
We note that a bound can be tightened in case MaRVeL relies on a more
permissive set of bounds than B̃.

Because at every update of If at least one bound is set or tightened and because
the step size is a discrete number, the number of iterations in which If is updated
is finite. If at some iteration, If has no ⊥, then MaRVeL terminates. Otherwise,
it must be that at least one bound can continue increasing or decreasing. In this
case, MaRVeL continues expanding the specification (by the definition of λ0).
If MaRVeL does not terminate because of If , even though every input entry is
bounded by a minimum and maximum values, it must be that the specification’s
size increases too slowly, even when λ0 continues decreasing. In this case, at some
iteration, λ0 decreases below λmin and MaRVeL terminates.

The maximal running time of a single iteration of MaRVeL is the sum of
TDeepPoly + |C − 1| · TMILP + |

⋃
W| · TD, where TDeepPoly is the execution time

of the incomplete verifier DeepPoly, TMILP is the execution time of the MILP
verifier (recall that MaRVeL sets a timeout to the solver), and |

⋃
W| · TD is the

time to compute the gradient of the weakest points, involving a forward pass and
a backward pass to each over the classifier D. The other computations take a
negligible time. Note that because W is computed by a MILP solver,

⋃
W is finite.

The dominant factor of the running time is TMILP (under reasonable choices). To
mitigate it, MaRVeL solves the MILPs parallelly. Naturally, advances in complete
robustness verification or MILP solvers can reduce MaRVeL’s execution time.

6 Evaluation

In this section, we evaluate MaRVeL. We begin by describing our experiment
setup and baselines and then present our experiments.

Experiment setup We implemented MaRVeL2 in Python, as a module in ERAN3,
to easily integrate with DeepPoly and the MILP-based verification. MaRVeL

2 https://github.com/ananmkabaha/MaRVeL.git
3 https://github.com/eth-sri/eran
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Table 1: The networks used in our experiments.

Dataset Name Architecture #Neurons

MNIST 3× 50 Fully-connected 100
3× 100 Fully-connected 200
Conv2 Convolutional 2948

Fashion-MNIST 3× 50 Fully-connected 100
3× 250 Fully-connected 500
Conv2 Convolutional 2948
Conv3 Convolutional 3664

CIFAR-10 3× 400 Fully-connected 800
Conv2 Convolutional 1188
Conv3 Convolutional 4368

Contagio/Virustotal 3× 50 Fully-connected 100
3× 100 Fully-connected 200

leverages ERAN’s RefinePoly domain that runs DeepPoly and then the MILP
verifier as described in Section 5.1. The MILP solver is Gurobi. Experiments ran
on an Ubuntu 20.04.1 OS on a dual AMD EPYC 7713 server with 2TB RAM. We
evaluated MaRVeL over several datasets. First, image datasets: MNIST [24] and
Fashion-MNIST [44], consisting of 28× 28 gray-scale images, and CIFAR-10 [20],
consisting of 32× 32× 3 colored images. Second, Contagio/Virustotal [7,40], a
malware dataset consisting of malicious and benign PDF files, each with 135
features. Table 1 shows the different networks we used. Their activation function
was ReLU. The Conv2 architecture comprised of two convolutional layers followed
by two fully-connected layers, while Conv3 comprised of three convolutional layers
followed by three fully-connected layers. We also used a toy synthetic dataset
consisting of two-dimensional inputs [26], described later, to visualize the size of
the specifications with respect to the decision boundaries. In our experiments,
the norm is L1 (p = 1), the balancing factor is λ0 = 0.99, the number of precise
neurons is nm = 200, and the MILP timeout is TMILP = 100 seconds.

Baselines We compare MaRVeL to existing works on computing maximal robust
specifications [26,25]. Both approaches rely on CROWN [49], an incomplete
robustness verifier, which overapproximates ReLU with linear constraints. They
differ in the kind of specifications they compute. Liu et al. [26] compute non-
uniform, symmetric robust specifications, defined by a non-negative vector ϵ:
Iϵ(x) = [x1 − ϵ1, x1 + ϵ1], . . . , [xd − ϵd, xd + ϵd]. Li et al. [25] build on [26] to
compute non-uniform, asymmetric robust specifications, like our specifications.
We used Liu et al.’s code 4, which supports only fully-connected networks, and
extended their code to support Li et al.’s approach. We compare MaRVeL and

4 https://github.com/liuchen11/CertifyNonuniformBounds
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Fig. 4: A comparison of the maximal specifications computed by MaRVeL, by
prior works, and by an impractical optimal approach, over a 2D synthetic dataset.

these works by measuring the specifications’ average diameter ϵavg =
∑d

i=1 ui−li
d .

Since MaRVeL and these works rely on different robustness verifiers, for a fair
comparison, we also report the diameter ϵu of the maximal robust (uniform)
ϵ-ball of CROWN and the MILP verifier. This is computed by a binary search
running 15 steps and starting from ϵ0 = 0.1.

Synthetic dataset We start by considering the toy synthetic dataset, presented
by [26]. This dataset consists of two-dimensional inputs x1, x2 ∈ [−1, 1] and ten
classes C = [1, . . . , 10]. We create training and test sets by randomly generating
9000 inputs and 1000 inputs, respectively. We consider a fully-connected network
with two hidden layers, each with 10 ReLU neurons. After training, it reaches over
99% accuracy on the test set. Figure 4(a) shows the network’s decision boundaries
(the black curves). We run MaRVeL and both baselines on ten inputs. We further
compare to a (highly impractical) optimal approach that computes all decision
boundaries around the given input using a grid search, accordingly computes all
maximal robust specifications, and returns the specification maximizing the L1

norm. Figure 4(a) shows the maximal robust specifications of each approach. It
shows that MaRVeL’s specifications reach the decision boundaries and cannot be
expanded in any dimension. In contrast, both prior works compute significantly
smaller specifications. Part of the difference is attributed to the underlying
verifier (MILP-based vs. CROWN). To illustrate this, Figure 4(b) shows the
average diameter, over 100 inputs, of the specifications computed by the non-
uniform approaches and of the maximal uniform ϵ-ball computed by the verifiers.
The results show that the average diameter of MaRVeL is 93% of the optimal
approach’s average diameter, while the diameter of the prior works is only 26%.
The average diameter of the maximal uniform ϵ-balls computed by CROWN is
only 50% of that computed by the MILP verifier. On average, the execution time
of MaRVeL is 12.1 seconds and the execution time of prior works is 7.8 seconds.
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Table 2: A comparison of MaRVeL to the baselines over fully-connected networks.

Dataset Network MaRVeL Li et al. Liu et al.

T f [m] ϵfavg T [m] ϵavg ϵu T [m] ϵavg T [m] ϵavg ϵu

Contagio 3× 50 23.1 0.74 41.8 0.91 0.35 0.14 0.17 0.11 0.16 0.16
3× 100 11.9 0.31 28.2 0.40 0.26 0.24 0.15 0.22 0.15 0.14

MNIST 3× 50 14.0 0.172 42.2 0.196 0.073 0.52 0.027 0.48 0.026 0.024
3× 100 12.4 0.093 32.6 0.10 0.068 4.2 0.025 3.12 0.022 0.020

F-MNIST 3× 50 10.2 0.147 47.0 0.191 0.066 3.9 0.029 2.40 0.0295 0.024
3× 250 4.9 0.031 21.7 0.037 0.028 1.3 0.015 0.9 0.014 0.010

CIFAR-10 3× 400 0.7 0.015 21.3 0.047 0.015 3.2 0.007 2.8 0.007 0.002

Real datasets We next evaluate MaRVeL over the image datasets and the malware
dataset. We compare MaRVeL to our two baselines over the fully-connected
networks, because their code does not support other architectures. For every
network, we run each approach over 50 inputs with a one hour timeout. We
measure the execution time in minutes T and the average diameter ϵavg. To
understand the advantage of the CEGIS step, we compare to a variant of MaRVeL
that terminates at the first iteration that I is not robust (its results are denoted
by f ). We note that the variant that simply removes the CEGIS step and runs
MaRVeL as described (in particular, it continues to run even if it encounters
non-robust specifications) obtains very close results to the variant we consider,
given a one hour timeout, but it always reaches the timeout. We also report, for
each approach’s verifier, the average diameter of the maximal ϵ-ball ϵu. Table 2
shows the results. The results indicate that MaRVeL’s average diameter is larger
by 5.2x compared to Liu et al. and by 5x compared to Li et al.. Without the
CEGIS step, MaRVeL’s average diameter is larger by 3.8x compared to Liu et
al. and by 3.7x compared to Li et al.. The average diameter of the maximal
ϵ-ball is 3.3x larger for the MILP verifier. MaRVeL’s average execution time is 34
minutes, and if it terminates upon encountering the first non-robust specification,
it is 8 minutes. Table 3 shows the results for the convolutional networks. The
results show that MaRVeL’s average diameter is larger by 3.1x than the average
diameter of the maximal ϵ-balls, and without CEGIS, it is larger by 1.4x.

Robustness interpretability We next show how our maximal specifications can
expose interpretable robustness attributes of the network. We focus on networks
for MNIST and Fashion-MNIST, consisting of gray-scale images with a single
centered object (a digit or a fashion item). For each network, we run MaRVeL and
both baselines on 50 images of different classes. For each approach, given the 50
specifications I, we generate a heatmap image yI ∈ Rd. A pixel in yI is the average

diameter of its interval: yIi =
∑

I∈I ui−li
|I| . A heatmap shows which pixels are more

robust: the brighter the pixel the larger its average interval. Figure 5 shows the
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Table 3: A comparison of MaRVeL to uniform ϵ-balls over convolutional networks.

Dataset Network MaRVeL

T f [m] ϵfavg T [m] ϵavg ϵu

MNIST Conv2 2.7 0.010 51.9 0.041 0.007

F-MNIST Conv2 4.2 0.032 30.1 0.063 0.016
Conv3 6.0 0.008 25.0 0.011 0.009

CIFAR-10 Conv2 4.6 0.005 39.2 0.008 0.003
Conv3 3.45 0.003 32.2 0.005 0.003

Ours Liu et al. Li et al.
MNIST 3x100 F-MNIST 3x50

Ours Liu et al. Li et al.

Liu et al.
MNIST 3x100 PGD

Ours Li et al.
F-MNIST 3x50 PGD

Ours Liu et al. Li et al.

Fig. 5: The heatmaps of the specifications computed by MaRVeL and the baselines.

heatmaps of four networks, the first two are trained without defense and the
other two are trained with the PGD defense [27]. The heatmaps demonstrate the
following. First, MaRVeL computes larger diameters than the baselines, for all
pixels. Second, the baselines’ heatmaps suggest that the maximal robust diameters
are obtained for the background pixels. In contrast, MaRVeL’s heatmaps suggest
that some object pixels have the largest diameters. This shows that MaRVeL’s
maximal specifications provide a better perspective on the network’s robustness.
Third, all approaches show that, as expected, networks trained with PGD are
more robust than their undefended counterparts. However, MaRVeL provides a
clearer distinction between the robustness of object pixels and background pixels.

Hyper-parameters Lastly, we discuss the effect of the hyper-parameters: (1) the
balancing factor λ0 and (2) nm, the number of precise neurons at every layer,
affecting the verifier’s accuracy. In these experiments, we focus on the 3 × 50
MNIST network. We begin with the effect of λ0. Recall that a very small value
leads to ignoring the robustness level, while a very large value leads to ignoring the
specification size. We consider the values: λ0 ∈ {0.01, 0.25, 0.5, 0.75, 0.99, 2, 10}.
For each value, we run MaRVeL on 50 images. Figure 6(a) shows the average
diameter as a function of λ0. The figure shows that the largest diameters are
obtained for λ0 ≈ 1. Next, we study the effect of the number of precise neurons nm.
The larger its value, the more accurate the verifier, but the execution time is
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(a) (b) (c)

Fig. 6: The effect of the hyper-parameters of MaRVeL.

longer. We consider the values: nm ∈ {10, 20, 30, 40, 50} (note that for nm = 50
all neurons are precisely encoded). For each value, we run MaRVeL on 50 images.
Figure 6(b) and (c) show the average diameter and execution time as a function
of nm. The results show that the higher the value of nm, the larger the average
diameter. Naturally, the higher the value of nm, the longer the execution time.

7 Related Work

In this section, we discuss the closest related work to ours.

Robustness verifiers and specifications Most existing robustness verifiers fo-
cus on ϵ-ball neighborhoods but can be easily extended to analyze interval
specifications. These verifiers rely on various techniques, including overapprox-
imation analysis [29,1,41] and in particular overapproximation by linear relax-
ations [43,3,13,33,31,32,28], simplex [18,19,11], mixed-integer linear programming
(MILP) [38,23,34], and duality [9,30]. The closest works to ours present algorithms
for computing non-uniform robust neighborhoods [26,25]. These works focus on
image classification tasks, where one work computes non-uniform, symmetric
robust specifications [26], and the other work computes non-uniform, asymmetric
robust specifications [25]. Both works rely on the CROWN verifier [49], employ-
ing linear relaxations to the network’s computation. Based on CROWN’s linear
constraints, they define a gradient to search for maximal robust specifications.
The gradient computation is integrated as part of CROWN’s analysis. In contrast,
MaRVeL relies on a MILP verifier, providing a more accurate analysis, and the
optimizer and verifier take turns. Another work focuses on non-uniform specifica-
tions that are defined by a transformation matrix, leveraging data correlations [12].
It relies on linear relaxations and duality to compute maximal non-uniform robust
specifications for malware classification and spam detection tasks. In contrast,
MaRVeL focuses on interval specifications. A different line of research computes
adversarial regions, i.e., neighborhoods of adversarial inputs [8].

Optimization-guided search MaRVeL and prior works [26,25] rely on numerical
optimization to compute maximal non-uniform robust specifications. Many works
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rely on optimization to solve other robustness-related tasks. For example, for
computing adversarial examples with uniform perturbation budgets [27,4,22,5,6]
or non-uniform perturbation budgets [47,12], defending a network by adversarial
training [45,27,35], or improving a verifier’s precision by looking for spurious
adversarial examples added during analysis [1,2].

Program synthesis MaRVeL builds on two common program synthesis techniques.
First, it relies on oracle-guided synthesis [17,16], introduced for synthesizing
programs by interaction with an oracle (e.g., a solver). Second, it leverages
counterexample-guided inductive synthesis (CEGIS) [17,36], where a program
synthesizer checks candidates with a solver, which either confirms or provides a
counterexample. In the latter case, the synthesizer prunes the search space.

8 Conclusion

We present MaRVeL, an approach and a system for computing maximal non-
uniform robust interval specifications, maximizing a target norm. The key idea
is to rely on oracle-guided numerical optimization. This allows MaRVeL to rely
on an accurate MILP verifier and thereby compute larger specifications than
prior works. At each iteration, the optimizer submits a candidate specification to
the MILP verifier. The verifier returns the weakest points, inputs minimizing the
robustness level. Accordingly, the optimizer defines a gradient and computes a new
candidate specification. To avoid wasting time on non-robust candidates, MaRVeL
relies on CEGIS and restricts bounds that are part of non-robust specifications.
We evaluate MaRVeL on several datasets and networks, including fully-connected
and convolutional networks. We show it computes specifications with 5.1x larger
average diameters compared to prior works, for fully-connected networks, and
2.6x larger average diameters compared to uniform ϵ-balls, computed with an
accurate MILP verifier. We further show that CEGIS allows MaRVeL to compute
specifications with 1.8x larger average diameters. We demonstrate that MaRVeL’s
specifications can identify input regions for which networks tend to be more
robust or vulnerable as well as compare the robustness of different networks.
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