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Abstract. Deep neural networks have been shown to be vulnerable
to adversarial attacks that perturb inputs based on semantic features.
Existing robustness analyzers can reason about semantic feature neighbor-
hoods to increase the networks’ reliability. However, despite the significant
progress in these techniques, they still struggle to scale to deep networks
and large neighborhoods. In this work, we introduce VeeP, an active learn-
ing approach that splits the verification process into a series of smaller
verification steps, each is submitted to an existing robustness analyzer.
The key idea is to build on prior steps to predict the next optimal step.
The optimal step is predicted by estimating the robustness analyzer’s
velocity and sensitivity via parametric regression. We evaluate VeeP on
MNIST, Fashion-MNIST, CIFAR-10 and ImageNet and show that it
can analyze neighborhoods of various features: brightness, contrast, hue,
saturation, and lightness. We show that, on average, given a 90 minute
timeout, VeeP verifies 96% of the maximally certifiable neighborhoods
within 29 minutes, while existing splitting approaches verify, on average,
73% of the maximally certifiable neighborhoods within 58 minutes.

1 Introduction

The reliability of deep neural networks (DNNs) has been undermined by adversar-
ial examples: perturbations to inputs that deceive the network. Many adversarial
attacks perturb an input image by perturbing each pixel independently by up
to a small constant ϵ [14,45,27,36,46]. To understand the local robustness of a
DNN in ϵ-balls around given images, many analysis techniques have been pro-
posed [52,12,24,48,34,38,54,16,42,13,47]. In parallel, semantic adversarial attacks
have been introduced, such as HSV transformations [21] and colorization and
texture attacks [5]. Figure 1 illustrates some of these transformations. Unlike
ϵ-ball adversarial attacks which are not visible, feature adversarial attacks can
be visible, because the assumption is that humans and networks should not
misclassify an image due to perturbations of semantic features. Reasoning about
networks’ robustness to semantic feature perturbations introduces new challenges
to robustness analyzers. The main challenge is that unlike ϵ-ball attacks, where
pixels can be perturbed independently, feature attacks impose dependencies on
the pixels. Abstracting a feature neighborhood to its smallest bounding ϵ-ball
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will lead to too many false alarms. Thus, existing robustness analyzers designed
for ϵ-ball neighborhoods perform very poorly on feature neighborhoods.

This gave rise to several works on analyzing the robustness of feature neigh-
borhoods [32,3,42]. These works rely on existing ϵ-ball robustness analyzers and
employ two main techniques to reduce the loss of precision. First, they encode the
pixels’ dependencies imposed by the features by adding layers to the network [32]
or by computing a tight linear abstraction of the feature neighborhood [3]. Second,
they split the input range into smaller parts, each is verified independently, e.g.,
using uniform splitting [32,3,42]. Despite of these techniques, for deep networks
and large neighborhoods, existing works either lose too much precision and fail
to verify or split the neighborhoods into too many parts. In the latter case, ap-
proaches must choose between a very long execution time (several hours for deep
networks and a single neighborhood) or forcing the analysis to terminate within
a certain timeout, leading to certification of neighborhoods that are significantly
smaller than the maximal certifiable neighborhoods. These inherent limitations
diminish the ability to understand how vulnerable a network is to feature attacks.

Our work: splitting of feature neighborhoods via active learning We address the
following problem: given a set of features, each with a target perturbation diame-
ter, find a maximally robust neighborhood defined by these features. We propose
a dynamic close-to-optimal input splitting to boost the robustness certification
of feature neighborhoods. Unlike previous splitting techniques, which perform
uniform splitting [32,3] or branch-and-bound [7,48,6,35,52,30,19], our splitting
relies on active learning: the success or failure of previous splits determines the
size of future splits. The key idea is to phrase the verification task as a process,
where each step picks an unproven part of the neighborhood and submits it to
a robustness analyzer. The analyzer either succeeds in proving robustness or
fails. Our goal is to compute the optimal split. An optimal split is one where the
number of failed steps is minimal, the size of each proven part is maximal, and
the execution time is minimal. Predicting an optimal split requires estimating
the exact robustness boundary of the neighborhood, which is challenging.

Splitting by predicting the analyzer’s velocity and sensitivity We present VeeP (for
verification predictor), a learning algorithm, treating the robustness analyzer as
the oracle, which dynamically defines the splitting. VeeP defines the next step by
predicting the next optimal diameters. To this end, it approximates the analyzer’s
sensitivity and velocity for the unproven part. Informally, the sensitivity is a
function of the diameters quantifying how certain the robustness analyzer is that
the neighborhood is robust. A positive sensitivity means the analyzer determines
the neighborhood is robust, while a non-positive sensitivity means the analyzer
fails. The velocity is a function of the diameters quantifying the speed of the
robustness analyzer. VeeP predicts the diameters of the next step by solving
a constrained optimization problem: it looks for the diameters maximizing the
velocity such that its sensitivity is positive. VeeP relies on parametric regression
to approximate the velocity and sensitivity functions of the current step. It
terminates either when it succeeds verifying robustness for the given target
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Fig. 1: Examples of ImageNet images and maximally perturbed images in the
neighborhoods that VeeP verified robust, for an AlexNet model.

diameters or when it fails to prove robustness for too small parts. It is thus a
sound and precise verifier, up to a tunable precision level.

We implemented VeeP in a system, which relies on GPUPoly [34] as the
robustness analyzer (the oracle). We evaluate VeeP on different kinds of architec-
tures, including ResNet models for CIFAR-10 and AlexNet models for ImageNet.
Our experiments focus on several semantic features: brightness, contrast, and
HSL (hue, saturation, lightness). Results show that, when given a 90 minute
timeout, VeeP almost perfectly closes the gap between the maximal certified
feature neighborhoods and the minimal feature adversarial examples: the verified
diameters that VeeP computes are, on average, at least 96% of the maximal
certifiable diameter. On average, VeeP completes in 29 minutes. We compare to
branch-and-bound, which computes 74% of the maximal diameters in 54 minutes,
and to uniform splitting, which computes 73% of the maximal diameters in 62
minutes. We study the acceleration rate of VeeP over branch-and-bound and
uniform splitting by running an experiment without a timeout. Results show that
VeeP reduces the execution time of branch-and-bound by 4.4x and of uniform
splitting by 10.2x. We also compare to the theoretical optimal greedy baseline that
“knows” the optimal diameter of every step. We show that VeeP’s time overhead
is only 1.2x more than this theoretical optimal baseline. Figure 1 illustrates how
large the neighborhoods that VeeP verifies. It shows pairs of original ImageNet
images and the maximally perturbed image in the neighborhood that VeeP
verified robust, for an AlexNet model. In these examples, every neighborhood
is defined by a different feature (hue, saturation, and lightness), and the target
diameter submitted to VeeP is determined by computing a minimal adversarial
feature example along the corresponding feature.

To conclude, our main contributions are:
– A learning algorithm, called VeeP, to verify robustness of feature neighbor-

hoods. VeeP computes an optimal split of the neighborhood, each part is
verified by a robustness analyzer. To predict the next split, VeeP approximates
the analyzer’s velocity and sensitivity using parametric regression.

– An evaluation of VeeP on MNIST, Fashion MNIST, CIFAR-10 and Im-
ageNet over fully-connected, convolutional, ResNet, and AlexNet models.
Our evaluation focuses on neighborhoods defined using brightness, contrast,
and HSL. Results show that VeeP provides a significant acceleration over
branch-and-bound and uniform splitting.
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2 Preliminaries

In this section, we provide the background on neural network classifiers, verifica-
tion of feature neighborhoods, and existing splitting approaches.

Neural network classifiers Given an input domain Rd and a set of classes C =
{1, . . . , c}, a classifier is a function mapping inputs to a score vector over the
possible classes D : Rd → Rc. A fully-connected network consists of L layers.
The first layer takes as input a vector from Rd, denoted i, and it passes the
input as is to the next layer. The last layer outputs a vector, denoted oD(i),
consisting of a score for each class in C. The classification of the network for
input i is the class with the highest score, c′ = argmax(oD(i)). When it is clear
from the context, we omit the superscript D. The layers are functions, denoted
h1, h2, . . . , hL, each takes as input the output of the preceding layer. The network’s
function is the composition of the layers: o(i) = D(i) = hL(hL−1(· · · (h1(i)))).
The function of layer m is defined by a set of processing units called neurons,
denoted nm,1, . . . , nm,km

. Each neuron takes as input the outputs of all neurons
in the preceding layer and outputs a real number. The output of the layer m is
the vector (nm,1, . . . , nm,km

)T consisting of all its neurons’ outputs. A neuron
nm,k has a weight for each input wm,k,k′ and a single bias bm,k. Its function
is computed by first computing the sum of the bias and the multiplication of

every input by its respective weight: n̂m,k = bm,k +
∑km−1

k′=1 wm,k′,k · nm−1,k′ .
This output is then passed to an activation function φ to produce the output
nm,k = φ(n̂m,k). Activation functions are typically non-linear functions. In this
work, we focus on the ReLU activation function, ReLU(x) = max(0, x). We note
that, for simplicity’s sake, we explain our approach for fully-connected networks,
but it extends to other architectures, e.g., convolutional and residual networks.

Local robustness A safety property for neural networks that has drawn a lot
of interest is local robustness. Its meaning is that a network does not change
its classification for a given input under a given type of perturbation. Formally,
given an input x, a neighborhood containing x, I(x) ⊆ Rd, and a classifier
D, we say D is robust in I(x) if ∀x′ ∈ I(x), argmax(D(x′)) = argmax(D(x)).
We focus on feature neighborhoods, consisting of perturbations of an input x
along a set of features f1, . . . , fT . The perturbation of an input along a feature
f is a function f : Rd × R → Rd, mapping an input x and a diameter δ to
the perturbation of x along the feature f by δ. To abbreviate, we call the
perturbation function the feature f , similarly to [32]. For all features f and
inputs x, we assume f(x, 0) = x. Given a feature f , a diameter δ̄, and an input
x, the feature neighborhood If,δ̄(x) is the set of all perturbations of x along f

by up to diameter δ̄: If,δ̄(x) = {f(x, δ) | 0 ≤ δ ≤ δ̄}. We extend this definition
to a set of features by considering a diameter for every feature. Given a set of
features f1, . . . , fT , their diameters δ̄1, ..., δ̄T , and an input x, we define:

If1,δ̄1,...,fT ,δ̄T (x) = {fT (...f2(f1(x, δ1), δ2)..., δT ) | 0 ≤ δ1 ≤ δ̄1, ..., 0 ≤ δT ≤ δ̄T }
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3 Verification of Feature Neighborhoods: Motivation

There are many verifiers for analyzing robustness of neural net-
works [52,12,24,48,34,38,54,16,42,13,47]. Most of them analyze box neigh-
borhoods, where each input entry is bounded by an interval [l, u] (for l, u ∈ R).
In particular, they can technically reason about feature neighborhoods: first, one
has to over-approximate a feature neighborhood If1,δ̄1,...,fT ,δ̄t(x) to a bounding
box neighborhood, and then pass the box neighborhood to any of these verifiers.
However, this approach loses the dependency between the input entries, imposed
by the features, and may result in spurious counterexamples. To capture the
dependencies, a recent work proposes to encode features as a layer and add it
to the network as the first layer [32]. This has been shown to be effective for
various features, such as brightness, hue, saturation, and lightness. However, for
deep networks and large feature neighborhoods, encoding the dependency is not
enough to prove robustness: either the analysis time is too long or the analyzer
loses too much precision and fails. Because feature neighborhoods have low
dimensionality (every feature introduces a single dimension), divide-and-conquer
is a natural choice for scaling the analysis [32,3,42].

Divide-and-conquer for feature neighborhoods Divide-and-conquer is highly ef-
fective for scaling the analysis of feature neighborhoods. The key challenge is
computing a useful split. A branch-and-bound approach (BaB) computes the split
lazily [7,48,6,35,52,30,19]. To illustrate, consider a single feature neighborhood
If,δ̄(x). A BaB approach begins by analyzing If,δ̄(x). If the analysis fails, it splits
the neighborhood into two neighborhoods, If,δ(x) and If,δ̄−δ(f(x, δ)). Then, it
analyzes each neighborhood separately and continues to split neighborhoods
upon failures. As a result, it tends to waste a lot of time on analyzing too
large neighborhoods until reaching to suitable-sized neighborhoods. A uniform
splitting approach determines a number m and splits the neighborhood into
If,δ̄/m(x), . . . , If,δ̄/m(f(x, δ̄ · (m− 1)/m)) [32,3,42]. This approach may still fail
for some neighborhoods, due to timeouts or loss in precision, or waste too much
time on verifying too small neighborhoods. This raises the question: can we dy-
namically determine a split that minimizes the execution time of the verification?

4 Problem Definition: Time-Optimal Feature Verification

In this section, we define the problem of robustness verification of feature neigh-
borhoods minimizing the execution time. To simplify notation, the definitions
assume a single feature, but they easily extend to multiple features.

We view the robustness analysis of feature neighborhoods as a process. Given
a feature neighborhood, the verifier executes a series of steps, dynamically
constructed, until reaching the maximal diameter for which the network is robust.
Our verification process relies on a box analyzer A, which can determine the
robustness of box neighborhoods. Every verification step determines the next
(sub)neighborhood to verify and invokes the analyzer. The analyzer A need
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not be complete and may fail due to overapproximation error. That is, given
a network and a box neighborhood, A returns robust, non-robust, or unknown.
Since the goal of the feature verifier is to compute a maximal neighborhood, if A
returns unknown, it splits the last neighborhood into smaller neighborhoods. To
guarantee that the verification process terminates, if A fails to verify a feature
neighborhood with a diameter up to a predetermined threshold δMIN, we assume
that this neighborhood is not robust. Because the feature verifier terminates when
reaching the maximal diameter, the challenge is not to improve its precision but
rather to keep its execution time minimal. We next provide formal definitions.

Definition 1 (Verification Step). Given a box analyzer A, a classifier D, and
a feature neighborhood defined by f , δ̄ and x, a verification step is a pair (δx, δ),
such that 0 ≤ δx < δ̄ and 0 < δ ≤ δ̄. The result of a verification step (δx, δ) is
A’s result for D and If,δ(f(x, δx)), which is robust, not robust or unknown.

We next define feature verification sequence, consisting of verification steps.

Definition 2 (Feature Verification Sequence). Given a box analyzer A, a
precision level δMIN, a classifier D, and a feature neighborhood defined by f , δ̄,
and x, a feature verification sequence is a sequence of verification steps s1, . . . , sm
that verify the maximally robust neighborhood up to δ̄, i.e., either:
– there is no step whose result is not robust and, for every δy ∈ [0, δ̄], there is

a step s = (δx, δ), where δx ≤ δy ≤ δx + δ, for which A returns robust. That
is, the verification steps cover all inputs in If,δ̄(x), or

– there is no step whose result is not robust, except perhaps the last step sm =
(δm,x, δm) whose result is unknown or not robust and δm = δMIN. For every
δy ∈ [0, δm,x], there is a step s = (δx, δ), where δx ≤ δy ≤ δx + δ, for which
A returns robust. That is, the verification steps cover all inputs in If,δm,x

(x)
and we assume there is an adversarial example in If,δMIN

(f(x, δm,x)).

Finally, we define the problem of time-optimal feature verification. To this
end, we introduce a notation. Given a verification step s, we denote by t(s) the
execution time of the analyzer A on the neighborhood defined by step s. We note
that we assume that the time to define a verification step s = (δx, δ) is negligible
with respect to t(s). Given a feature verification sequence S = (s1, . . . , sm), its
execution time is the sum of its steps’ execution times: t(S) = Σm

i=1t(si). Our
goal is to compute a feature verification sequence minimizing the execution time.

Definition 3 (Time-Optimal Feature Verification). Given a box analyzer
A and a feature neighborhood defined by f , δ̄ and x, a time-optimal feature
verification sequence S is one that minimizes the execution time: argminSt(S).

This problem is challenging because divide-and-conquer algorithms have the
execution time of a verification step only after they invoke A on that step’s
neighborhood. Thus, constructing a verification sequence is bound to involve
suboptimal choices. However, we show that it is possible to predict the execution
time of a (new) verification step based on the execution times of the previous
steps. We note that although we focus on analysis of deep neural networks, we
believe that predicting verification steps based on prior steps is a more general
concept which is applicable to analysis of other machine learning models.
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5 Prediction by Proof Velocity and Sensitivity

In this section, we present the key concepts on which we build to predict the
verification steps: proof velocity and sensitivity. We show that these can be
modeled by parametric functions. We then explain how these functions can be
used to predict optimal steps by solving a constrained optimization problem.

Proof velocity To minimize the execution time of the verification process, we wish
to maximize the proof velocity. Proof velocity is the ratio of the neighborhood’s
certified diameter and the time to verify it by the box analyzer A. In the following,
we denote the execution time of step s = (δx, δ) by t(s) = tA(If,δ(f(x, δx))). The
certified diameter of this step’s neighborhood, denoted δsA, is equal to δ, if A
returns robust, and 0, if A returns non-robust or unknown.

Definition 4 (Proof Velocity). Given a box analyzer A, a classifier D, a
feature neighborhood defined by f , δ̄, and x, and a verification step s = (δx, δ),

the proof velocity of s is: VA(If,δ(f(x, δx))) =
δsA

t(If,δ(f(x,δx)))
.

The velocity is either a positive number, if A returns robust, and 0 otherwise.
A zero velocity means that the feature verifier has to split this neighborhood and
that we have not gained from this analysis. Empirically, we observe that if A relies
on linear approximations to analyze the network robustness, the proof velocity
can be modeled as a function of the certified diameter. For small networks or
neighborhoods, the velocity is approximately a linear function of the diameter,
because the analysis time is, in practice, constant. The larger the network or
the neighborhood, the longer the analysis time because the overapproximation
error increases, and thus the analyzer A executes more refinement steps (e.g.,
back-substitution [42] or solving linear programs [48]). We empirically observe
that when the network or the neighborhood are large enough to trigger refinement
steps, the execution time is approximately exponentially related to the diameter:
t(δ) ∝ exp(β · δ), for some parameter β. Consequently, V (δ) ∝ δ · exp(−β · δ).
Note that, for β = 0, the proof velocity is linear in δ. Thus, this function captures
both cases of small network/neighborhood and large network/neighborhood. We
illustrate this relation in Figure 2, showing the measured proof velocity (the
blue dots) as a function of the diameter δ, across different models and three box
analyzers relying on different linear approximations. The figure also shows the
function we use to approximate the proof velocity (the red curve). The figure
shows how close the approximation is. We next summarize this observation.

Observation 1. For every verification step s = (δx, δ), if δ
s
A > 0, the velocity

can be approximated by: V (δ) = αV · δ · exp(−βV · δ) for βV ≥ 0 and αV ∈ R.

We can use this observation to predict time-optimal verification steps. To this
end, at the beginning of every verification step, we require to (1) estimate the
parameters of the velocity’s function and (2) predict the maximal δsMAX for which
the analyzer A returns robust. With these values, we can define the next step by
computing δ ∈ (0, δsMAX] maximizing the proof velocity. In order to predict the
maximal value δsMAX, we define the concept of neighborhood sensitivity.
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Fig. 2: Velocity and sensitivity as functions of the diameter δ, for different models
and three box analyzers: GPUPoly [42], DeepZono [41], and RefinePoly [40]. Blue
dots show the measured values and red curves show our function approximations.

Neighborhood sensitivity The sensitivity concept builds on the commonly known
concept network confidence. Given a classifier D and an input x, the confidence
of the classifier in class j is the output oDj (x), i.e., the score that D assigns for j
on input x. Based on this term, we define the sensitivity of x as the difference
between the confidence in j and the highest confidence in a class different from j:

SD(x, j) = oDj (x)− argmaxj′ ̸=j(o
D
j′ (x))

If SD(x, j) > 0, then D classifies x as j, and the higher SD(x, j) the more
certain the classifier is in its classification of x as j. We extend this term to
neighborhoods. We define the neighborhood sensitivity as the minimal sensitivity
of its inputs: SD(I, j) = min{SD(x′, j) | x′ ∈ I}. From this definition, we get
few observations. First, for any I ⊆ I ′, we have SD(I ′, j) ≤ SD(I, j). That is,
extending a neighborhood with more inputs may decrease the neighborhood
sensitivity in j. Second, if SD(I, j) ≤ 0, then I is not robust to j. Third, if A
is precise, then for every verification step s = (δx, δ), we have δsA = δ if and
only if the sensitivity SD(If,δ(f(x, δx)), j) is positive. In practice, we rely on an
imprecise analyzer A and we cannot compute the exact neighborhood sensitivity.
However, we can approximate a neighborhood’s sensitivity by relying on the
analysis of A. Since most incomplete analyzers compute, for every output neuron
k, real-valued bounds [lk, uk], we can approximate the neighborhood sensitivity:

SD
A (If,δ(f(x, δx)), j) = lj −max

j′ ̸=j
uj′

Thus, to compute the maximal δsMAX whose neighborhood can be proven robust by
A, we can compute the maximal δsMAX for which SD

A (If,δsMAX
(f(x, δx)), j) > 0. The

remaining question is how to approximate the sensitivity function. Empirically, we
observe that ifA relies on linear approximations to analyze the network robustness,
the neighborhood sensitivity has an exponential relation to the diameter. This
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is demonstrated in Figure 2, for different models and linear approximations.
The figure shows how close the approximation is (red curves) to the measured
sensitivity (the blue dots). We next summarize this observation.

Observation 2. For every verification step, the neighborhood sensitivity can be
approximated by: SA(δ) = αS + βS · exp(γS · δ), where αS , βS , γS ∈ R.

This exponential relation can be explained by considering the effect of linear
approximations on non-linear computations. At a high-level, the exponential
relation is linked to the number of non-linear neurons being approximated. We
exemplify this relation in the extended version of this paper [23, Appendix A].

Time-optimal feature verification via proof velocity and sensitivity Given the
functions of the velocity and sensitivity, we can state our problem as a constrained
optimization. Given an analyzer A, a feature neighborhood defined by f , δ̄ and x,
and the currently maximal certified diameter δx, the δ of the optimal verification
step s = (δx, δ) is a solution to the following optimization problem:

max V D(If,δ(f(x, δx))) such that SD
A (If,δ(f(x, δx)), cx) > 0

Here, cx is the classification of x. Because both functions are convex, the global
maximum can be computed as standard. First, we compute the feasible region of
δ by comparing SD(If,δ(f(x, δx)), cx) to zero. Second, we compute the derivative
of V D(If,δ(f(x, δx))), compare to zero, and compute the optimal δ. If the optimal
δ is not feasible, we take the closest feasible value. Therefore, if we know the
parameters of the velocity and sensitivity functions, we can compute an optimal
verification step. The challenge is to approximate these parameters, for every
step. In the next section, we explain how to predict them from the previous steps.

6 VeeP: A System for Time-Optimal Feature Verification

In this section, we present our system, called VeeP, for computing time-optimal
verification steps. VeeP builds on the ideas presented in Section 5 and dynamically
constructs the verification steps by solving the constrained optimization problem.
The challenge is predicting the parameters of the velocity and sensitivity functions.
The key idea is to treat the analyzer as an oracle, whose responses to previous
verification steps are used to define the next step. Conceptually, VeeP builds on
active learning, where it acts as the learner for optimal verification steps and the
analyzer acts as the oracle. Throughout execution, VeeP tracks the accumulated
verified diameters of the robust neighborhood. If a verification step succeeds, the
robust neighborhood is extended and the verified diameters increase. If a step
fails, the next predicted diameters will be smaller, up to a minimal value δMIN.
Thus, although VeeP predicts the diameters, which may be too small or large, its
overall analysis is sound and precise up to δMIN. It is sound because it employs
divide-and-conquer and relies on a sound analyzer. It is precise because if a step
fails for diameters greater than δMIN, then VeeP attempts again to extend the
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robust neighborhood by predicting smaller diameters. We begin this section by
explaining how VeeP reasons about neighborhoods defined by a single feature
and then extend it to general feature neighborhoods.

6.1 VeeP for Single Feature Neighborhoods

In this section, we describe VeeP for analyzing neighborhoods defined by a single
feature. VeeP takes as inputs a classifier D, a feature f , a diameter δ̄, and an input
x. During its execution, it maintains in δx the sum of the certified diameters. It
returns the maximal δx ≤ δ̄ for which the neighborhood is robust, up to precision
δMIN. VeeP operates iteratively, where the main computation of every iteration
is determining a verification step sk = (δx, δk) to submit to the analyzer A.

Defining a verification step The goal of a verification step is to increase the
accumulated certified diameter δx by a diameter δk. VeeP aims at choosing δk
such that (1) the sensitivity of If,δk(f(x, δx)), as determined by the box analyzer
A, is positive, and (2) If,δk(f(x, δx)) maximizes the proof velocity. VeeP leverages
Observation 1 and 2 and approximates them as Sk(δ) = αS + βS · exp(γS · δ)
and Vk(δ) = αV · δ · exp(−βV · δ). It solves two parametric regression problems
to determine θkS = (αS , βS , γS) and θkV = (αV , βV ). This requires to obtain
examples: e1S = (δ1, S(δ1)), ..., eMS = (δM , S(δM )) and e1V = (δ1, V (δ1)), ..., eMV =
(δM , V (δM )). The minimal number of examples is three for Sk(δ) and two for
Vk(δ). Given the examples, the parameters are determined by minimizing a loss:

θkS = argmin
αS ,βS ,γS

L(αS , βS , γS , e
1
S , . . . , e

M
S ) θkV = argmin

αV ,βV

L(αV , βV , e
1
V , . . . , e

M
V )

For the loss, VeeP uses the least squares error. Given the parameters, VeeP solves
the optimization problem (Section 5) to approximate the optimal value of δk:

max Vθk
V
(δ) such that Sθk

S
(δ) > 0

The remaining question is how to obtain examples. A naive approach is to
randomly select δ1, . . . , δM and for each δi run the analyzer A on If,δi(f(x, δx)),
to find the sensitivity and velocity. However, these M calls to A are highly time
consuming, especially because their only goal is to predict the next diameter to
analyze. Instead, VeeP relies on previous steps to estimate examples by leveraging
two empirical observations. First, the function Vk(δ) is similar to previous Vk−i(δ),
for small values of i. Thus, VeeP can use as examples (δk−i, Vk−i(δk−i)), for small
values of i. Second, the function Sk(δ) is similar to Sk−i(δ), for small values of i,
up to a small alignment term: Sk(0)− Sk−i(0). Thus, VeeP can use as examples
(δk−i, Sk−i(δk−i) + Sk(0)− Sk−i(0)), for small values of i. Note that computing
Sk(0) does not require to run A, because the sensitivity of If,0(f(x, δx)) is exactly
the sensitivity of the input f(x, δx), which can be computed by running it through
the classifier D. Based on these observations, VeeP obtains examples as follows.
Its first example is (0, Sk(0)). Since the velocity of this step’s neighborhood is
zero, it is not used to approximate Vk(δ). The next M − 1 examples are defined
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Fig. 3: Analysis for the brightness feature, an ImageNet image, and AlexNetTiny.

as described by the previous M − 1 predicted diameters, which have already
been submitted to A. Note that the examples are defined from previous steps
regardless of whether their neighborhoods have been proven robust or not. When
VeeP begins its computation and has no previous steps, it executes M − 1 steps
whose diameters are some small predetermined values.

Example Figure 3 shows an example of VeeP’s analysis for a brightness neigh-
borhood with δ̄ = 0.2, an ImageNet image x (the image on the left) and an
AlexNetTiny classifier D. We assume M = 3. The first two steps rely on prede-
termined small diameters δ0 = 10−4 and δ1 = 10−3. VeeP begins by submitting
to A the neighborhood If,δ0(x) and A returns robust. VeeP thus updates the
accumulated diameter δx = 10−4 and constructs the example e0. The example
consists of the sensitivity S0 and velocity V0 (computed from A’s analysis), and
the sensitivity S0(0) at δx = 0 (computed by running x through D). The next
verification step submits to A the neighborhood If,δ1(f(x, 10

−4)) and A returns
robust. VeeP thus updates δx = 1.1·10−3 and constructs the example e1, consisting
of the sensitivity S1 and velocity V1 (computed from A’s analysis) and the sensi-
tivity S1(0) (computed by running f(x, 10−4) through D). To predict the next
diameter δ2, VeeP relies on e0, e1 and S2(0) (computed by running f(x, 1.1 ·10−3)
through D). Its examples are: e0S = (0, 1.52), e1S = (10−4, S0 + S2(0) − S0(0)),
e2S = (10−3, S1+S2(0)−S1(0)), and e0V = (10−4, V0), e

1
V = (10−3, V1). Given the

examples, it minimizes the MSE loss to compute the parameters θ2S and θ2V . After-
wards, it solves the constrained optimization function to compute δ2. The result
is δ2 = 2.8 · 10−3. VeeP submits to A the neighborhood If,δ2(f(x, 1.1 · 10−3)) and
A returns robust. VeeP updates δx and constructs the example e2, as described
before. VeeP predicts the next diameter δ3, by repeating this process using the
examples e1 and e2. It continues until reaching the target diameter δ̄ = 0.2. The
most perturbed image in this neighborhood is shown on the right of Figure 3.

Overall operation The operation of VeeP is summarized in Figure 4 and mostly
follows the description above, up to few modifications to guarantee termination.
Initially, VeeP sets δx = 0 and generates the first M−1 steps using predetermined
diameters. Every verification step predicts the next diameter based on previous
iterations, as described before (steps 1–4 in Figure 4). Then, to avoid certification
failures and guarantee termination, VeeP performs three corrections to the
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Fig. 4: The VeeP System.

predicted diameter δk (step 5). First, it checks whether in the last M steps,
there has been a step i with a smaller predicted diameter, δi < δk, that failed.
If so, VeeP sets δk to the minimal value between the last verified diameter (if
exists) and the last failed one from the last M steps. Second, it subtracts a small
constant from δk. Third, it guarantees that δk is not below the precision level by
setting δk = max(δk, δMIN). These refinements, along with the prediction based
on recent examples, aim at mitigating predicting too large or too small diameters.
The neighborhood defined by (δx, δk) is submitted to the analyzer A (step 6),
which returns the real-valued bounds of the output neurons. Accordingly, VeeP
computes the sensitivity Sk and velocity Vk. If Sk > 0, then the neighborhood is
robust and thus δx is increased by δk. Afterwards, VeeP checks the termination
conditions. The first condition is Sk ≤ 0 and δk = δMIN, indicating that the
neighborhood is maximal. The second condition is δx = δ̄, indicating that VeeP
certified the target diameter. If the conditions are not met, VeeP constructs the
example of this step and continues to another iteration.

Correctness analysis We next discuss the time overhead of VeeP and its correct-
ness. The first lemma analyzes the time overhead of VeeP. The overhead is the
additional time that VeeP requires compared to an oblivious splitting approach.
The overhead of every step consists of the call to the classifier D (to compute
Sk(0)) and the time to solve the regression problems (to approximate Sk and
Vk). The time overhead also includes the M − 1 initial calls to the analyzer A.

Lemma 1. The total overhead is n · (TD + TR) +ΣM−1
i=1 TA,i, where TD is the

time to run a single input in the classifier D, TR is the time to solve a regression
problem from M examples, n is the number of verification steps and TA,i is the
execution time of A on the ith initial step.

In practice, TD and TR are significantly shorter than the time to run the analyzer
A. Since the value of M is small (we pick M = 3 or M = 4), the overhead
of the initial queries to the analyzer is negligible when compared to the total
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execution time of VeeP. As a result, we observe that the execution time of VeeP
is very close to the optimal greedy baseline that “knows” the optimal diameter of
every step. We continue with a lemma guaranteeing termination and a theorem
guaranteeing soundness and precision (up to δMIN). Proofs are provided in the
extended version of this paper [23, Appendix B].

Lemma 2. Given a classifier D, an input x, a feature f and a diameter δ̄, if A
is guaranteed to terminate, then VeeP is guaranteed to terminate.

Theorem 1. Given a classifier D, an input x, a feature f , a diameter δ̄, and a
precision level δMIN, if A is sound (but may be incomplete), then VeeP is:
– sound: if it returns If,δx(x), then this neighborhood is robust, and
– precise up to δMIN: if it returns δx smaller than δ̄, then we assume there is

δ̂ ∈ (δx, δx + δMIN] such that x′ = f(x, δ̂) is an adversarial example.

6.2 VeeP for Multi-feature Neighborhoods

In this section, we present VeeP’s algorithm to verify neighborhoods defined by
multiple features f1, f2, . . . , fT . VeeP computes a sequence of verification steps
that cover the maximal robust T -dimensional hyper-rectangle neighborhood. The
sequence is constructed such that VeeP computes the maximal diameters feature-
by-feature. To compute the maximal diameter of the ith feature, VeeP computes
the maximal robust i-dimensional neighborhood of the first i features. Similarly
to Section 6.1, a verification step is a pair of an offset vector (δ1, . . . , δT ) (instead
of δx) and a diameter δ. A verification step thus corresponds to a hyper-cube
neighborhood If1,δ,...,fT ,δ(x0), where x0 is the perturbation of x as determined by
the features and offsets (x0 = fT (. . . (f2(f1(x, δ1), δ2), . . .), δT )). While VeeP could
predict a different diameter for each feature, this would increase the prediction’s
complexity by a factor of T . Besides this, the analysis is similar to Section 6.1 but
generalizes it to high dimension, resulting in few differences. First, computing
the offsets is more subtle than computing δx. Second, the examples used for
prediction also leverage the closest examples. Third, computing the accumulated
verified diameters, required for checking the termination conditions, involves
obtaining the vertices of the certified region. We next explain all these differences,
then exemplify VeeP’s operation, and finally present the algorithm.

Offsets Initially, all offsets are zero. Recall that VeeP computes the maximal
diameters feature-by-feature, and, for every fi, it computes the maximal robust
i-dimensional neighborhood of f1, ..., fi. After every verification step, VeeP com-
putes the next offsets. Assume VeeP is currently at feature fi. If a step fails for
δ > δMIN, the offsets of the next step are identical. If a step fails for δ = δMIN

or reaches δ̄i, VeeP computes the initial offsets of fi+1, as shortly described.
Otherwise, VeeP computes the next offsets based on a feature-by-feature order
(from 1 to i). The order, defined in [23, Appendix C], guarantees that VeeP
covers the entire i-dimensional neighborhood. We later exemplify it on a running
example. Upon starting a feature fj , VeeP computes the initial offsets based
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on the already certified neighborhoods. This is obtained by finding the earliest
step forming a vertex on the j-dimensional boundary of the certified region, such
that the vertex’s jth offset is within (0, δ̄j). This leverages the already certified
neighborhoods: since the steps define hyper-cube neighborhoods, as a byproduct
of their analysis, there is also progress in the direction of the succeeding, not yet
analyzed, features. The complete computation is provided in [23, Appendix C].

Examples The diameter of a verification step is predicted by M + 1 examples:
(0, Sk(0)), M − 1 (adapted) recent examples and, to increase the prediction
accuracy, the closest example, with respect to the Euclidean distance. The M − 1
recent examples are used only if they (aim to) advance the diameter of the same
feature as the current step does. If not all of them advance the same feature, VeeP
completes the missing examples with closest examples or initialization examples.

Termination VeeP terminates when it reaches all target diameters or all maximal
diameters. These conditions generalize the termination conditions presented
in Section 6.1. To check the first condition, VeeP maintains an array ds of
the certified diameters, which are updated after every verification step. The
diameters are computed from the vertices bounding the certified region. Although
the region induced by the maximal diameters is a hyper-rectangle, the certified
region may form other shapes. During the analysis, VeeP computes the vertices
of the certified region. To update ds, it selects the maximal bounded hyper-
rectangle, with respect to the Euclidean norm. To check the second condition,
VeeP checks whether it has failed for T consecutive iterations for a neighborhood
whose diameter is δMIN. Correctness follows from the the operation of VeeP: upon
failure of a neighborhood with diameter δMIN, it proceeds to the next feature.
Thus, T consecutive failures imply that VeeP has reached all maximal diameters.

Example We next exemplify VeeP for a neighborhood defined by brightness
and contrast, where δ̄1 = δ̄2 = 0.08 and M = 3 (Figure 5). VeeP computes
the maximal diameters one by one: first the brightness’s diameter and then the
contrast’s diameter. Figure 5(a) visualizes the verification steps that compute the
maximal diameter of brightness. The sequence begins from the offset (0, 0) (i.e.,
x0 = x), and the computation is similar to Section 6.1. When VeeP reaches δ̄1, it
continues to the contrast feature. It begins by finding the earliest verification step
forming a vertex on the 2-dimensional boundary of the certified region, such that
the vertex’s second offset is within (0, δ̄2). This is the first step and the vertex is
(0, 0.018) (since this step’s diameter is 0.018). Thus, the initial offset of contrast is
(0, 0.018). During the analysis of the contrast feature, VeeP computes verification
steps feature-by-feature. Thus, after initializing the offsets, VeeP advances the
brightness’s offset, until reaching its maximal certified diameter (rightmost square,
top row, Figure 5(b)). Then, by the order VeeP follows for the verification steps, it
(again) looks for the earliest step forming a vertex on the 2-dimensional boundary
of the certified region, such that the vertex’s second offset is within (0, δ̄2). This
is the leftmost square, top row, Figure 5(b). Thus, it sets the next offset (i.e., of
the leftmost square, top row, Figure 5(c)) to that vertex’s offsets. The rest of the
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(a) (b) (c)

(d) (f)(e)

(0,0.065)
(0.08,0.067)

(0.08,0)

(0.08,0.067)

Fig. 5: Example of VeeP’s analysis to certify a neighborhood defined by brightness
and contrast, for an MNIST image, on a fully-connected network.

computation continues similarly (Figure 5(c), (d), and (f)). We next illustrate the
different sets of examples used for the prediction (besides (0, Sk(0))). Consider
Figure 5(b). The examples used by the middle step at the top row are the
two leftmost squares at the top row and the middle square at the row below.
The examples used by the leftmost square at the top row are the three closest
examples – the three leftmost squares at the bottom row – since there are no steps
advancing the contrast’s diameter. After every verification step, VeeP constructs
for each feature the vertices of the certified neighborhood. Figure 5(e) shows the
vertices after completing the verification steps of Figure 5(d): ten red vertices for
contrast and two yellow vertices for brightness. Figure 5(f) shows the vertices
after completing all verification steps. Given the vertices, VeeP computes the
accumulated verified diameter of each feature, which is the minimum coordinate
of its vertices. For example, in Figure 5(e), the verified diameter of brightness is
0.08, which is the minimum of the first coordinates of (0.08, 0) and (0.08, 0.067),
and similarly, the verified diameter of contrast is 0.065. VeeP updates the current
maximal diameters to these diameters if they form a larger hyper-rectangle than
the current ones. Note that if VeeP terminates after reaching all target diameters
(e.g., Figure 5(f)), the certified region is a hyper-rectangle and is thus returned.

Overall operation Algorithm 1 summarizes the operation of VeeP. VeeP begins
by initializing ds, the maximal diameters array, the first M − 1 examples (as
described in Section 6.1), the offset array and a counter count min, tracking
the number of consecutive failures. Then, it enters a loop, where each iteration
computes a single verification step. An iteration of the loop begins by determining
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Algorithm 1: Multi-feature-VeeP (D, x, f1, δ̄1,. . . , fT , δ̄T )

Input: A classifier D, input x, features f1, . . . , fT and diameters δ̄1, . . . , δ̄T .
Output: Diameter array ds s.t. If1,ds[1],...,fT ,ds[T ](x) is maximally robust.

1 ds = [0, . . . , 0]
2 Ex = InitExamples(M)
3 offsets = [0, . . . , 0]
4 count min = 0
5 while ∃ds[i] < δ̄i ∧ count min < T do
6 x0 = perturb(x, f1, . . . , fT , offsets)
7 S0 = D(x0)
8 δ = predict(Ex, x0, S0)
9 t0 = time()

10 {lo,j , uo,j}cj=1 = A(D, If1,δ,...,fT ,δ(x0))
11 t1 = time()
12 S = lcx −maxj ̸=cx uj

13 V = S > 0 ? δ
t1−t0

: 0

14 Ex = Ex ∪ {(δ, S, V, S0, offsets)}
15 offsets = compute next offsets(Ex, δ̄1, . . . , δ̄T )
16 BV1, . . . , BVT = compute certified neighborhood vertices(Ex)
17 ds curr = [0, . . . , 0]
18 for i = 1; i ≤ T ; i++ do
19 ds curr[i] = min{vi | v ∈ BVi}
20 if vectorNorm(ds curr) > vectorNorm(ds) then ds = ds curr
21 count min = (S ≤ 0 ∧ δ == δMIN)? count min + 1 : 0

22 return ds

x0 from the offsets (Line 6). Then, it progresses as described in Section 6.1 (Lines
7–14): it computes x0’s sensitivity, predicts δ, submits to A, computes the velocity
and sensitivity, and adds this verification step as a new example. After that, it
computes the new offsets (Line 15). Next, the maximal diameters are computed.
To this end, VeeP constructs, for each feature, the vertices of the certified region
(Line 16). Computing the vertices is a technical computation determined from
the set of examples. We omit the exact computation. Given the vertices, VeeP
computes the current verified diameters ds curr. The current verified diameter
of feature i is the minimum ith coordinate of its vertices (Lines 17–19). Then, if
the Euclidean norm of ds curr is greater than that of ds, it updates ds (Line 20).
Lastly, the counter count min is increased, if A failed, or resets, otherwise (Line
21). The loop continues as long as VeeP has not reached all target diameters and
has not failed during the last T iterations (Line 5).

Correctness We next present the correctness guarantees of Algorithm 1. Proofs
are provided in the extended version of this paper [23, Appendix B].

Lemma 3. Given a classifier D, an input x, features f1, . . . , fT and diameters
δ̄1, . . . , δ̄T , if A is guaranteed to terminate, then VeeP is guaranteed to terminate.
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Lastly, we show that VeeP is sound and precise, up to precision of δMIN for
each feature’s maximal diameter.

Theorem 2. Given a classifier D, an input x, features f1, . . . , fT and diameters
δ̄1, . . . , δ̄T , if A is sound (but may be incomplete), then:
– VeeP is sound: at the end of the algorithm If1,ds[1],...,fT ,ds[T ](x) is robust.
– VeeP is precise up to δMIN for each feature’s maximal diameter.

7 Evaluation

In this section, we evaluate VeeP. We begin with implementation aspects and
optimizations and then present our experiments.

Implementation We implemented VeeP in Python1. It currently supports
neighborhoods defined by one or two features. For the analyzer, it relies on
GPUPoly [34]. It further builds on the idea of Semantify-NN [32] that encodes
features as input layers with the goal of encoding pixel relations to reduce
overapproximation errors. Semantify-NN encodes features using fully-connected
and convolutional layers. For some features, this approach is infeasible for high-
dimensional datasets because of the high memory overhead. To illustrate, denote
the input dimension by h×w× 3. The HSL input layers, as defined in Semantify-
NN, map an (R,G,B) triple into a single value in the feature domain, resulting in
a perturbed output of h× w. This output is then translated back to the input
domain. Namely, a fully-connected layer requires (h× w)× (h× w × 3) weights.
For ImageNet, where h = w = 224, this layer becomes too large to fit into a
standard memory (over 60GB). Instead, we observe that for some features the
feature layer’s weights are mostly zeros and thus this layer can be implemented
using sparse layers [37,2]. Our implementation sets δMIN = 10−5 and M = 3.
As optimization, it does not keep all previous examples, but only the required
ones, which are dynamically determined. For example, for the neighborhood in
Figure 5, VeeP keeps only the examples at the top two rows.

Evaluation setup We trained models and ran the experiments on a dual AMD
EPYC 7742 server with 1TB RAM and eight NVIDIA A100 GPUs. We evaluated
VeeP on four image datasets: MNIST [28] and Fashion-MNIST [53], with images of
size 28×28, CIFAR-10 [25], with images of size 32×32×3, and ImageNet [11], with
images of size 224×224×3. We considered fully-connected, convolutional [29],
ResNet [18], and AlexNet [26] models. For MNIST and Fashion-MNIST, we
used FC-5000x10, a fully-connected network with 50k neurons. For MNIST, we
also used a convolutional network SuperConv with 88k neurons (from ERAN’s
repository2). For CIFAR-10, we used ResNetTiny with 311k neurons (from ERAN)
and ResNet18 with 558k neurons. For ImageNet, we used AlexNetTiny with 444k
and AlexNet with 600k neurons. The last four models were trained with PGD [31].

1 https://github.com/ananmkabaha/VeeP
2 https://github.com/eth-sri/eran
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Since GPUPoly currently does not support MaxPool layers, we replaced them in
AlexNet with convolutional ones (justified by [44]). The CIFAR-10 models were
taken from ERAN’s repository, and we trained the other models.

Baseline approaches We compare VeeP to popular splitting approaches: branch-
and-bound (BaB) [7,48,6,35,52,30,19] and uniform splitting [32,3,42]. Any BaB
technique starts by attempting to certify the robustness of the given neighborhood.
If it fails, it splits the verification task into two parts and attempts to certify
the robustness of each separately. If the certification fails again, BaB repeats the
splitting process until all parts certify the original neighborhood. The difference
between BaB techniques is what neurons they can split and how they choose
what to split. For example, some rely on heavy computations, such as solving
a linear program [6,35]. For our setting, where the split focuses on the input
neurons and the input has low dimensionality, the long-edge approach, which
splits the input neuron with the largest interval, has been shown to be efficient [6].
We thus compare to this approach. Uniform splitting splits a neighborhood into
smaller neighborhoods of the same size, sufficiently small so the analyzer can
certify them. Thus, it requires a pre-determined split size (unlike VeeP and
BaB which adapt it during the execution). For a fair comparison, we need to
carefully determine this size: providing a too small size will result in too long
execution times (biasing our results), while providing a too large size will result
in certification failures. Thus, we estimate the maximal split size which will
enable the uniform splitting to certify successfully. To this end, before running
the experiments, we run the following computation. For each neighborhood, we
define several smaller neighborhoods. For each, we look for the maximal ϵ which
can be verified by GPUPoly without splitting. Finally, we determine the split
size of the uniform splitting to be the minimal value of ϵ across all these smaller
neighborhoods. For a fair comparison, both baseline approaches were integrated
in our system, i.e., they rely on GPUPoly and the feature layers described before.

Experiments We run two experiments: one limits the execution time with a
timeout and measures the maximal certified diameter, and the other one measures
execution time as a function of the certified diameter. In each experiment, we
run multiple problem instances. In each instance, we provide each approach a
network, an image, one or two features, and a target diameter (if there are two
features, both have the same target diameter). We define the target diameter to
be the diameter of the minimal feature adversarial example δadv (computed by a
grid search). That is, we provide each approach an upper bound on the maximal
certified diameter. We measure how close is the returned certified diameter
to δadv. Note that our problem instances are challenging because the feature
neighborhoods we consider are the largest possible.

Maximal certified diameter given a timeout In the first experiment, we evaluate
the maximal certified diameter of all approaches, given a timeout. The evaluated
feature neighborhoods are defined by brightness (a linear feature) and contrast and
HSL (non-linear features). The contrast feature defines the brightness difference
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Table 1: VeeP vs. branch-and-bound and uniform splitting over brightness,
contrast, hue, saturation, and lightness neighborhoods, averaged over 50 images.

Dataset Model VeeP BaB Uniform
δadv δf% t[m] δf% t[m] δf% t[m]

MNIST SuperConv Brightness 0.61 100 0.5 100 1.16 98 4.1
MNIST SuperConv B&C 0.56 99 26.1 98 35.2 81 77.3
MNIST FC 5000x10 Brightness 0.15 100 1.9 100 11.5 100 13.4
MNIST FC 5000x10 B&C 0.134 94 54.5 59 86.4 62 81.8
F-MNIST FC 5000x10 Brightness 0.3 100 3.5 100 15.5 100 27.9

CIFAR-10 ResNetTiny Brightness 0.42 100 7.9 100 32.1 89 60.6
CIFAR-10 ResNetTiny B&C 0.3 96 73.4 49 144.6 30 164.1
CIFAR-10 ResNetTiny Hue 3.36 99 27.5 62 59.1 77 48.94
CIFAR-10 ResNetTiny Saturation 0.83 98 5.6 100 21.0 96 68.8
CIFAR-10 ResNetTiny Lightness 0.39 100 10.8 100 45.9 76 32.6

ImageNet AlexNetTiny Brightness 0.22 95 68.8 59 87.6 59 82.7
ImageNet AlexNetTiny Hue 0.99 78 40.6 25 67.4 37 68.1
ImageNet AlexNetTiny Saturation 0.39 97 27.7 79 69.0 71 74.9
ImageNet AlexNetTiny Lightness 0.16 93 64.8 17 83.4 52 71.4

between light and dark areas of the image, and the HSL features are color space
transformations, where hue defines the position in the color wheel, saturation
controls the image’s colorfulness and lightness the perceived brightness. We run
VeeP, BaB, and uniform splitting over the different models. For most networks and
neighborhoods, we let each splitting approach run on a single GPU for 1.5 hours.
For ResNet18, AlexNet, and the brightness and contrast (B&C) neighborhoods
of TinyResNet, we let each splitting approach run on eight GPUs for 3 hours. We
measure the execution time in minutes t[m] and the maximal certifiable diameter
δf . We compare δf to the diameter of the closest adversarial example in the
feature domain δadv (for B&C, we compare to (δadv,δadv)). Table 1 reports our
results for the smaller models. Each result is averaged on 50 images. The results
indicate that VeeP proves on average at least 96% of the maximal certifiable
diameters in 29 minutes. The maximal diameters computed by the baselines
are 74%, for BaB, and 73%, for uniform splitting. Their execution times are 54
minutes, for BaB, and 62 minutes, for uniform splitting. Table 2 reports our
results for the two largest models, ResNet18 and AlexNet. Because of the long
timeout, we focus on ten images and compare only to BaB. Our results show
that VeeP proves at least 96% of the maximal diameters, while BaB proves 44%.
VeeP’s execution time is 98 minutes, whereas BaB is 160 minutes.

Execution time as a function of the certified diameter In the second experiment,
we measure the execution time of every approach as a function of the certified
diameter. In this experiment, there is no timeout and thus we focus on two models,
ResNetTiny and AlexNetTiny, and two features: brightness and saturation. For
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Table 2: VeeP vs. branch-and-bound over large models, averaged over 10 images.

Dataset Model VeeP BaB
δadv δf% t[m] δf% t[m]

CIFAR-10 ResNet18 Brightness 0.41 100 88.4 58 150
CIFAR-10 ResNet18 Saturation 0.85 98 45.2 98 123

ImageNet AlexNet Brightness 0.42 92 130 6 180
ImageNet AlexNet Saturation 0.56 100 67.3 52 165
ImageNet AlexNet Lightness 0.32 93 162 3 180

each network and a feature, we consider 50 images. For each network, image, and a
feature, the target diameter is the diameter of the closest adversarial example δadv.
We run all approaches until completion. During the execution of each approach,
we record the intermediate progress, that is, the required time for certifying
r · δadv of the neighborhood, for ratio r ∈ {0.1, 0.2, . . . , 0.8, 0.9, 0.95, 0.98}.

Figure 6 shows the results of this experiment. It depicts the execution time in
minutes of each approach as a function of r, i.e., the ratio of the certified diameter
and the target diameter δadv. Our results indicate that VeeP provides acceleration
of 4.4x compared to BaB and acceleration of 10.2x compared to uniform splitting.
The figure demonstrates the main drawbacks of uniform splitting and branch-
and-bound. On the one hand, choosing a large step size for uniform splitting can
certify smaller ratios of the target diameter more quickly. On the other hand, for
larger ratios, uniform splitting must use a smaller step size, which significantly
increases the execution time. The results also show that BaB wastes a lot of time
on attempts to certify too large neighborhood until converging to a certifiable
split size. We note that both baseline approaches are sub-optimal since they do
not attempt to compute the optimal split size. In contrast, VeeP predicts the
split sizes that minimize the execution time and thus performs better than the
baselines. We validate VeeP’s optimality by comparing it to a theoretical greedy
optimal baseline. The theoretical baseline “knows” (without any computation)
the optimal step size for every verification step. To simulate it, before every
verification step of the optimal baseline, we compute the optimal step size by
running a grid search over the remaining diameter (i.e., δ̄ − δx). We then let the
optimal baseline pick the diameter determined by the grid search. Note that this
baseline is purely theoretical: we do not consider the execution time of running
the grid searches as part of its execution time. Our results indicate that VeeP’s
performance is very close to the theoretical baseline’s performance, VeeP is slower
by only a factor of 1.2x. The additional overhead of VeeP stems from several
factors: (1) the time to estimate the predictors, (2) the time to run the network
on f(x, δx), and (3) the inaccuracies of our predictors and correction steps.

Lastly, we exemplify how large the feature neighborhoods that VeeP certifies
are. Figure 7 shows four certified neighborhoods, defined by different features.
For each, the figure shows the features, the range of the certified diameters, and
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ImageNet AlexNetTiny (Brightness)CIFAR-10 ResNetTiny (Brightness)

CIFAR-10 ResNetTiny (Saturation) ImageNet AlexNetTiny (Saturation)

Fig. 6: Comparison of VeeP to uniform splitting, branch-and-bound, and a greedy
optimal baseline, averaged over 50 images.

several images generated by uniformly sampling from the certified range. The
images are organized across the diameter axis, where the original image x is at
the origin. These examples demonstrate that the certified feature neighborhoods
contain images that are visually different compared to the original image. Being
able to certify large feature neighborhoods allows network designers understand
the robustness level of their networks to feature perturbations.

8 Related Work

In this section, we discuss the most closely related work to VeeP.

Network robustness and feature verification Many works introduce verifiers
analyzing the robustness of L∞-balls, where each pixel is bounded by an in-
terval [52,12,24,48,34,38,54,16,42,13,47]. Other works consider feature verifica-
tion [32,3,42,49]. Earlier works on feature verification, focusing on rotations,
brightness and contrast, translate feature neighborhoods into L∞ neighborhoods
and then analyze them with existing verifiers [42,49]. Recent works encode the
feature constraints into the verifier. One work relies on Monte Carlo sampling to
overapproximate geometric feature constraints by convex linear bounds [3]. The
bounds are refined by solving an optimization problem and then submitted to an
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Fig. 7: Examples of images in feature neighborhoods, certified by VeeP.

existing verifier. Other work proposes an input layer that encodes the feature and
is added to the original network [32]. All works also employ uniform splitting.

Splitting techniques To increase precision and scalability, many verifiers rely
on uniform splitting [32,3,42] or branch-and-bound (BaB) [7,48,6,35,52,30,19].
Long-edge is a common BaB technique that splits the input with the largest
interval [7,52]. Smart-Branching (BaBSB) [7] and Smart-ReLU (BaBSR) [6,48]
rely on a fast computation to estimate the expected improvement of splitting an
input or a neuron and then split the one maximizing the improvement. Filtered
Smart Branching (FSB) extends BaBSR by bound propagation to estimate
multiple candidates of BaBSR [35,48]. Another work relies on an indirect effect
analysis to estimate the neuron splitting gain [19]. Others suggest to train GNNs
via supervised learning to obtain a splitting strategy [30]. However, building the
dataset and training the GNNs can be time consuming. In contrast to BaB, which
lazily splits inputs or neurons, VeeP dynamically predicts the optimal split.

Feature attacks Several adversarial attacks rely on semantic feature perturbations.
One work relies on HSV color transformations (which is close to HSL) [21]. Other
works link adversarial examples to PCA features [56,4,8]. Other feature attacks
include facial feature perturbations [15], colorization and texture attacks [5], fea-
tures obtained using scale-invariant feature transform (SIFT) [51], and semantic
attribute perturbations using multi-attribute transformation models [22].

Learning Our approach is related to several learning techniques. It is mainly
related to active learning, where a learner learns a concept by querying an
oracle [1]. Active learning is suitable for tasks in which labeling a dataset is
expensive [55], for example real-life object detection [17], crowd counting [57], and
image segmentation [39]. Similarly, in our setting, querying the analyzer to obtain
examples is expensive. Our setting is also related to online learning, where new
data gradually becomes available. Online learning typically addresses tasks with
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time-dependent data [20], e.g., visual tracking [33], stock price prediction [50], and
recommendation systems [9]. In contrast, VeeP’s examples are not time-dependent.
Our approach is also related to CEGIS and CEGAR. Counterexample-guided
inductive synthesis (CEGIS) synthesizes a program by iteratively proposing
candidate solutions to an oracle [43]. The oracle either confirms or returns a
counterexample. Counterexample-guided abstraction-refinement (CEGAR) is a
program verification technique for dynamically computing abstractions capable
of verifying a given property [10]. It begins from some abstraction to the program
and iteratively refines it as long as there are spurious counterexamples. In contrast,
VeeP relies on recent examples, not necessarily counterexamples.

9 Conclusion

We presented VeeP, a system for verifying the robustness of deep networks in
neighborhoods defined by a set of features. Given a neighborhood, VeeP splits
the verification process into a series of verification steps, each aiming to verify
a maximal part of the given neighborhood in a minimal execution time. VeeP
defines the next verification step by constructing velocity and sensitivity predictors
from previous steps and by considering recent failures. VeeP is guaranteed to
terminate and is sound and precise up to a parametric constant. We evaluate
VeeP over challenging experiments: deep models for MNIST, Fashion-MNIST,
CIFAR-10 and ImageNet, and large feature neighborhoods, defined by the closest
feature adversarial example. Results show that the average diameter of the
neighborhoods that VeeP verifies is at least 96% of the maximal certifiable
diameter. Additionally, VeeP provides a significant acceleration compared to
existing splitting approaches: up to 10.2x compared to uniform splitting and 4.4x
compared to branch-and-bound.
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34. Müller, C., Serre, F., Singh, G., Püschel, M., Vechev, M.: Scaling polyhedral neural
network verification on gpus. In MLSYS (2021)

35. Palma, A.D., et al.: Improved branch and bound for neural network verification via
lagrangian decomposition. arXiv:2104.06718 (2021)

36. Papernot, N., McDaniel, P.D., Goodfellow, I.J., Jha, S., Celik, Z.B., Swami, A.:
Practical black-box attacks against machine learning. In AsiaCCS (2017)

37. Richter, O., Wattenhofer, R.: Treeconnect: A sparse alternative to fully connected
layers. In ICTAI (2018)

38. Ryou, W., Chen, J., Balunovic, M., Singh, G., Dan, A.M., Vechev, M.T.: Scalable
polyhedral verification of recurrent neural networks. In CAV (2021)
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