
ExcUseMe: Asking Users to Help in Item Cold-Start
Recommendations

Michal Aharon
Yahoo Labs, Haifa, Israel

michala@yahoo-inc.com

Oren Anava
Technion, Haifa, Israel

oanava@tx.technion.ac.il

Noa Avigdor-Elgrabli
Yahoo Labs, Haifa, Israel
noaa@yahoo-inc.com

Dana Drachsler-Cohen
Technion, Haifa, Israel

ddana@cs.technion.ac.il

Shahar Golan
Yahoo Labs, Haifa, Israel

shaharg@yahoo-inc.com

Oren Somekh
Yahoo Labs, Haifa, Israel

orens@yahoo-inc.com

ABSTRACT
The item cold-start problem is of a great importance in collabo-
rative filtering (CF) recommendation systems. It arises when new
items are added to the inventory and the system cannot model them
properly since it relies solely on historical users’ interactions (e.g.,
ratings). Much work has been devoted to mitigate this problem
mostly by employing hybrid approaches that combine content-based
recommendation techniques or by devoting a portion of the user
traffic for exploration to gather interactions from random users.

We focus on pure CF recommender systems (i.e., without con-
tent or context information) in a realistic online setting, where ran-
dom exploration is inefficient and smart exploration that carefully
selects users is crucial due to the huge flux of new items with short
lifespan. We further assume that users arrive randomly one after the
other and that the system has to immediately decide whether the ar-
riving user will participate in the exploration of the new items.

For this setting we present ExcUseMe, a smart exploration algo-
rithm that selects a predefined number of users for exploring new
items. ExcUseMe gradually excavates the users that are more likely
to be interested in the new items and models the new items based on
the users’ interactions. We evaluated ExcUseMe on several datasets
and scenarios and compared it to state-of-the-art algorithms. Ex-
perimental results indicate that ExcUseMe is an efficient algorithm
that outperforms all other algorithms in all tested scenarios.

1 Introduction
Recommendation systems aim to present users with the most rel-
evant items (e.g., movies, songs, advertisements, etc.) by predict-
ing the user interest. Typically, they base their predictions on pre-
defined features and user activity. User activity refers to numerical
ratings or binary interactions users provide that reflect their inter-
est in certain items. Techniques that rely on features are known as
content-based [23] while techniques that rely solely on user activ-
ity are known as collaborative filtering (CF). CF is widely-used in
recommenders due to its high accuracy, good scalability, and ability
to execute without content analysis for feature extraction.

Though CF is employed in many industrial recommenders, there
is still active research on the question of how to cope with new users

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
RecSys’15, September 16–20, 2015, Vienna, Austria.
c© 2015 ACM. ISBN 978-1-4503-3692-5/15/09 ...$15.00.

DOI: http://dx.doi.org/10.1145/2792838.2800183.

or items [2, 3, 4, 15, 22]. This challenge, known as the cold-start
problem, arises since the system does not have relevant interactions
for the new entity (user or item) and thus cannot model it properly.
The user cold-start problem, in which a new user joins the system,
is commonly addressed by interviewing the new user and asking
her to rate several key items [9, 14, 24]. Unfortunately, the item
cold-start problem is trickier because items cannot be interviewed
and typically there are no users willing to rate every new item.

To model new items, CF recommenders select users for explo-
ration and record their interactions with the new items. However,
recommender systems typically have only a handful of slots to
present items, for both exploration and recommendation, and since
their goal is to present recommendations, the exploration process
must be: (i) efficient, namely require a few impressions for new
items, and (ii) accurate, namely obtain good results under some
quality measure, for example under the root mean squared error
(RMSE). Not only are CF recommenders expected to meet these
two goals but they also face the challenge that users arrive in an on-
line fashion, namely systems do not know which users will arrive
and when. This enforces the exploration process to decide whether
to present to users new items immediately upon their arrival.

In this paper, we present ExcUseMe, an algorithm for selecting
users in online explorations of CF recommenders that rely on bi-
nary interactions. ExcUseMe aims to select users that are likely be
interested in the new item and are thus expected to provide feed-
back. To detect such users, ExcUseMe attempts to excavate the in-
terested users’ mean characteristics. It begins with selecting users
with distinct tastes until obtaining the first feedback. Once a user
provides feedback, ExcUseMe selects users that are similar to this
user and are thus more likely to provide feedback on the new item.

We compare ExcUseMe to state-of-the-art algorithms on sev-
eral datasets and scenarios. Our scenarios simulate real-world set-
tings by varying the number of users available for exploration and
the number of participants. Experimental results indicate that Ex-
cUseMe obtains the best RMSE in all tested scenarios namely it is
an efficient and accurate algorithm. In addition, results show that
ExcUseMe converges towards selecting users that are interested in
the new items, thus ExcUseMe also provides better user experience
during exploration compared to the other algorithms.
Main Contributions The contributions of this paper are:

• Definition of an online exploration framework for selecting
users for the item cold-start problem, inspired by real-world
settings (Sec. 3). To the best of our knowledge, we are the
first to consider such realistic framework for this problem.

• An efficient and accurate algorithm, named ExcUseMe, for
selecting users in online explorations (Sec. 4).

83

• Evaluation of the exploration framework and the ExcUseMe
algorithm. Experiments show that ExcUseMe is an efficient
and accurate algorithm that outperforms state-of-the-art al-
gorithms in several datasets and scenarios (Sec. 5).

The rest of the paper is organized as follows. Sec. 2 provides
background and related work, Sec. 3 presents the problem defini-
tion and the exploration framework, Sec. 4 describes the ExcUseMe
algorithm, Sec. 5 presents evaluation results, and Sec. 6 concludes.

2 Background and Related Work
In this section, we provide background and survey related work.
We first describe the collaborative filtering recommendation tech-
nique (Sec. 2.1), then its inherent cold-start problem (Sec. 2.2), and
finally we discuss related aspects of online algorithms (Sec. 2.3).

2.1 Collaborative Filtering

Collaborative filtering (CF) is one of the most widely-used ap-
proaches for constructing recommender systems, commonly imple-
mented via latent factor models (LFM) or neighborhood methods.
The difference between these techniques is that LFM models users
and items in the same (latent factor) space and predicts whether a
user is interested in an item based on their relationship in that space,
whereas neighborhood methods predict the interest based on the re-
lationship of the user to other users or the relationship of the item
to other items [15]. For example, the item-item approach [19, 26]
predicts the tendency of a user to an item by inspecting her ratings
of items that tend to be rated similarly by other users.

Latent Factor Models In this paper, we follow the LFM approach.
In this approach, items and users are associated with latent factor
vectors and biases [17]. The vectors capture the users’ and items’
characteristics through latent factors, and the biases capture either
the likelihood that the user will be interested in an arbitrary item
(the user bias) or the likelihood that an arbitrary user will be inter-
ested in the item (the item bias). The latent factor vectors and biases
are inferred from the observed interactions, which are assumed to
be drawn from patterns reflecting the users’ tastes.

Matrix Factorization To infer the vectors and biases we employ a
common realization of the LFM which is based on low-rank matrix
factorization [17]. This approach is appealing due to its high pre-
dictive accuracy and good scalability and it provides a substantial
expressive power that allows modeling specific data characteristics
such as temporal effects [16], item taxonomy [6], and attributes [1].

2.2 The Cold-Start Problem

An inherent requirement of CF is to have historical user-item inter-
actions. Thus, when a new entity (user or item) appears and there
is no relevant historical interactions, the CF recommender cannot
model the new entity reliably. This is known as the user cold-start
problem if the new entity is user, or the item cold-start problem,
otherwise. While users and items are represented similarly in the
latent vector space (usually), these two problems are essentially dif-
ferent. The main difference is that new users can be interviewed by
the recommender to bootstrap their modeling. Another difference
is that in most settings the number of users is much larger than the
number of items, hence a typical item usually gets more ratings
than an individual user provides, which may affect the modeling.
We next review past work that has addressed these challenges.

The User Cold-Start Problem Modeling new users’ preferences is
typically obtained by short interviews during which the users rate
several items from carefully constructed seed sets. Seed sets may
be constructed based on popularity, contention, and coverage [10,
14, 24, 25]. In [24] the idea of constructing seed sets adaptively

based on user responses (in adaptive interviews) was recognized as
beneficial. Since then it was employed in many works, commonly
using decision trees [9, 18, 25].

The Item Cold-Start Problem A common approach to mitigate the
item cold-start problem is by providing additional attributes of the
new items to the recommender systems [1, 11, 12, 21]. This ap-
proach is known as the hybrid approach since it combines CF with
content based methods. The authors of [11, 12] propose a hybrid
approach based on Boltzmann machines. The authors of [1] pro-
pose a regression-based latent factor model in which the items’ and
users’ latent vectors are obtained from low-rank matrix decompo-
sition of a matrix whose products are weight matrices and attribute
matrices. The authors of [21] improve this work by solving a con-
vex optimization problem to estimate the weight matrices.

Other works have addressed a different setting in which there
are few ratings to the new items but there is no item content or con-
text information. They showed that new items’ latent factor vectors
could be estimated by a linear combination of the raters’ latent fac-
tor vectors and their ratings (without retraining the model) [2, 3,
15, 22]. A common approach to obtain these ratings for new items
to bootstrap their modeling, applied by large-scale commercial rec-
ommenders, devotes a portion of the user traffic for random explo-
ration of the new items. A recent work [4] addresses this problem
of obtaining few ratings for new items in an offline setting in which
all users are available for selection and their modeling is known.
The authors first showed how to estimate the new item’s latent vec-
tor and bias from ratings and the raters’ latent vectors and biases
to obtain the optimal RMSE. They then formalized the problem of
selecting the raters as an optimization problem where the goal was
to minimize the RMSE obtained by the estimated new item’s vector
and bias. This problem was solved via an optimal design approach
and the solution was shown to be an approximation of the optimal
solution. While this work considers a different setting than ours
since it was applied in an offline setting and considered only pos-
itive interactions (ratings) while ignoring missing interactions, to
the best of our knowledge, it is the closest work to ours.

2.3 Online Algorithms

In this paper, we consider the setting of online explorations and
thus we apply online computations. In online computation settings,
the input sequence is unknown and must be processed upon its ar-
rival. A well-studied problem in this field is the secretary problem
in which an unknown series of secretaries arrive one by one where
each is assigned with a value revealed upon her arrival, and the goal
is to pick the secretary with the highest value. However, the algo-
rithm must decide upon the arrival of a new secretary whether to
hire her (and end the process) or decline her (which is an irrevoca-
ble decision) and wait for a future, possibly better, secretary. Due
to this limitation, the goal in such algorithms is to obtain a good
secretary, e.g., one whose value is guaranteed not to be too far from
the best secretary’s value.

The secretary problem has been extensively studied as well as its
variants. A relevant variant to our setting is the k secretary prob-
lem [5, 8, 13] in which the k best secretaries need to be hired. Our
work can be phrased as the k-secretary problem: the series of sec-
retaries are the series of users arriving and available to present them
the new item; the value of k is the predefined number of users that
may be selected; and the value of the users (the secretaries) is de-
termined by the ExcUseMe algorithm. To select the k users (secre-
taries) we follow the work of [5] that showed that it is beneficial to
split the set of arriving users to k portions and select one user from
each portion; further details are provided in Sec. 3.

84

3 Definitions and Exploration Framework
In this work, our goal is to compute latent factor vectors and biases
for new items by carefully selecting a few users to present them
with the new items and then computing the vectors and biases from
their interactions (feedback or lack of feedback). We begin this
section with a formal definition of this problem. Then, we explain
how to optimally compute such a vector from users’ interactions.
Thereby, the problem at hand boils down to selecting users to pro-
vide interactions for the new item (which is the problem ExcUseMe
addresses). Finally, we describe the online exploration framework
which resembles realistic online recommender settings.

The Item Cold-Start Problem We assume we are given a recom-
mender system whose data is:
• N users: U = {u1, u2, . . . , uN},
• M “old” items: Q = {q1, q2, . . . , qM}, and
• N ·M interactions: I : U × Q → {0, 1}, where I(u, q)

equals 1 if u provided feedback to q, or 0 otherwise.
We further assume that the system has learned from these inter-
actions a CF-model that captures characteristics of users and items
via real-valued column vectors of dimension d (where d is typically
small) and real-valued biases. Based on this model, the system es-
timates the interest of a user u in an item q as follows:

Ĩ(u, q) = V T
u · Vq + bu + bq + µ (1)

where Vu and Vq are the latent vectors, bu and bq are the biases,
and µ is the average feedback rate: µ= 1

|U×Q| ·
∑

u∈U,q∈Q
I(u, q).

In this setting we define the item cold-start problem. Given:
• a new item i,
• a candidate set UA (⊆ U) revealed in an online fashion, and
• a budget of k users for exploring i,

select k users from UA to provide interactions with i and accord-
ingly compute a latent factor vector and bias for i obtaining the
lowest root mean squared error (RMSE), where:

RMSE =

√
1

|U| ·
∑
u∈U

(Ĩ(u, i)− I(u, i))2 (2)

Computing Vectors and Biases from Interactions To compute the
new item’s latent factor vector Vi and bias bi from a set of interac-
tions we assume we are given k users Ui = {uj1 , ..., ujk}, their
vectors, biases, and interactions with the new item: Ii :Ui→{0, 1}.
We then follow the approach in [4] and define Vi and bi to be those
minimizing the mean squared error, namely:

(Vi, bi) = argmin
V ′
i ,b

′
i

∑
u∈Ui

((V T
u · V ′i + bu + b′i + µ)− Ii(u))2 (3)

This equation can be solved analytically, yielding the solution:

(Vi, bi) = (
∑
u∈Ui

V ′u · V ′Tu)−1(
∑
u∈Ui

(Ii(u)− bu − µ) · V ′u) (4)

where V ′u is the concatenated column vector (1,Vu). As noted
in [4], the left term in Eq. (4) might be non-invertible, however, in
practice a regularization term λ · (||V ′i ||2 + b′2i) is added to Eq. (3)
resulting in a different and invertible term: (λ·I+

∑
u∈Ui

V ′u·V ′Tu)−1.

The Online Exploration Framework To model realistic settings we
assume that the candidate set UA is revealed in an online fashion,
i.e., users arrive one by one. Upon the arrival of a user, an imme-
diate decision is required on whether she is chosen for exploring
the new item. If a user u is selected, a binary interaction Ii(u) is
revealed, indicating if u is interested in the new item i.

Algorithm 1: The Item Cold-Start Exploration Framework
Input: A new item i, a candidate set UA, a budget k, and a score

function Fs.
Output: The set of selected users and their interactions Di.

1 Di = ∅
2 phase= 0.5 · |UA|/k
3 initialize the auxiliary data structure A
4 for i = 0; i < k; i++ do
5 sm=−∞
6 for j = 0; j< phase; j++ do // The learning phase
7 Upon the arrival of a new user u from UA:
8 sm = max(sm,Fs(u,A))

9 for j = 0; j< phase; j++ do // The selection phase
10 Upon the arrival of a new user u from UA:
11 if Fs(u,A)≥sm or j == phase− 1 then
12 Ii(u) = getInteraction(u, i)
13 Di = Di ∪ {(u, Ii(u))}
14 update the auxiliary data structure A
15 break

16 return Di

To select users in such online setting, we follow the approach
presented in [5]. In this approach, k users are selected in k intervals
where each interval is divided into a learning phase and a selection
phase. During the learning phase, users are not selected but instead
evaluated via a score function, Fs, and the best score is recorded.
After the learning phase is completed, the selection phase begins
and the first user whose score is not lower than the recorded score is
selected. If no such user arrives, the last user of the selection phase
is selected. Once a user is selected, the next interval begins. The
size of each interval is at most UA/k thus enabling equal intervals.

Algorithm 1 summarizes this approach. It receives the new item
i, the candidate set UA that is revealed in a stream, the budget k,
and the score function Fs. The algorithm’s goal is to select k users
from UA and return the set Di of selected users and their interac-
tions with i. In case Fs requires an auxiliary data structure A, A is
initialized at the beginning and updated after each user selection.

4 The ExcUseMe Approach
In this section, we present the ExcUseMe algorithm that evaluates
users for exploring new items. It is defined by its score function
and auxiliary data structure required by the exploration framework.
The Score Function Fs and the UseMe Vector ExcUseMe aims
to discover (excavate) the mean latent vector of the users that are
interested in the new item. To this end, it maintains a vector that
converges to this average latent vector, which we call the UseMe
vector, and it is the auxiliary data structure described in the previous
section. The UseMe vector, denoted by VUseMe, is initialized with
zeros and after users provide interactions it is updated to the vector
Vi computed in Eq. (4) (Sec. 3) based on all revealed interactions.

The score function Fs returns the sum of the user bias and the
dot product of the user’s latent factor vector and VUseMe, namely:
Fs(u, VUseMe) = V T

u · VUseMe + bu. The dot product captures
the similarity of u to the UseMe vector and thus the likelihood that
u will provide feedback to i, while the user’s bias captures the like-
lihood that u will provide feedback to an arbitrary item, as the bias
is positively correlated to the number of old items for which u pro-
vided feedback. In the first iteration, Fs boils down to the user bias,
namely it guides to select users who tend to provide feedback.
The Rationale Behind ExcUseMe ExcUseMe is guided by two
principles: (i) to excavate the new item’s vector it is required to
reveal as much feedback as possible (because user feedback is
sparse), and (ii) the user whose score is maximal is assumed to be

85

Figure 1: A schematic illustration of ExcUseMe converging toward users who show interest in the new item (see Section 4 for details).

the most interested in the new item. Driven by these two guidelines,
ExcUseMe selects the users that are believed to be more likely to
provide feedback and thus will help to excavate the UseMe vector.
In addition, ExcUseMe leverages the co-existence of the users’ and
items’ latent vectors in the same latent space by computing VUseMe

as if it were the new item’s vector while treating it as capturing
the mean latent vector of the interested users.Hence, since VUseMe

and the estimated latent vector of the new item’s are computed in
the same manner (see Eq. 4), not only does ExcUseMe converge
towards selecting the interested users but also it is a semi-greedy
algorithm to estimate the new item’s vector.
Example To illustrate why ExcUseMe converges towards selecting
the interested users, consider Figure 1. To simplify presentation,
assume an offline setting. In 1(a), a set of candidates is revealed and
in 1(b) the first selected user is the one with the maximal positive
interactions. Assume this user does not provide feedback to the new
item. The UseMe vector (in dashed arrow) is updated to capture
this negative interaction, and the next user with the highest score
is in the opposite direction of that user’s vector. Then, in 1(c),
the second selected user does not provide feedback either and the
UseMe vector is updated to be orthogonal to the two users’ vectors.
In 1(d), the third selected user is the first to provide feedback and
thus the UseMe vector roughly remains in the same direction as this
user’s vector. The following selected users are assumed to have
vectors roughly in the same direction as well. In 1(e) and 1(f),
the two selected users are also assumed to provide feedback, which
strengthens the direction of the UseMe vector towards the interested
users, thus converging towards the mean vector of the interested
users.
Complexity We next show that ExcUseMe complexity is O(1). A
single score computation of Fs in ExcUseMe is O(d) where d is
the dimension of the latent factor vectors. The UseMe vector is
updated incrementally: after selecting a user, the terms V ′u·V

′T
u and

(Ii(u)− bu − µ) · V ′u are computed and added to the two terms in
Eq. (4) (Sec. 3), then the left factor inverse is computed, and finally
the dot product is computed. Computing these two terms is O(d),
computing the inverse is O(d2) since this term is a symmetrical
matrix, and the final dot product is also O(d2). Since d is constant
(and typically small), ExcUseMe overall complexity is O(1).

5 Evaluation
In this section, we evaluate the effectiveness of ExcUseMe using
several datasets. For each dataset we define 200 randomly selected
items as “new items”. The remaining items are used to train the ini-
tial model. After obtaining a mature initial latent factor model, we
evaluate the performance of the different exploration algorithms:
we execute them under the exploration framework for all 200 new
items (independently), where users selected by the algorithms re-
turn interactions based on the datasets (these interactions are not
used during the initial model training), then the new items’ latent

vectors and biases are computed as described in Eq. (4), and finally
they are evaluated based on three metrics. Experiments were im-
plemented in Java and ran on a Sony Vaio with Intel(R) Core(TM)
i7-3612QM processor and 8GB RAM.

We next provide more details on the evaluation and present ex-
perimental results. We begin with describing the datasets (Sec. 5.1),
then explain how the initial model is constructed (Sec. 5.2), con-
tinue with providing the evaluation metrics (Sec. 5.3), then list the
baseline algorithms (Sec. 5.4), and finally describe in more detail
the experiments and present their results (Sec. 5.5).

5.1 Datasets
Here, we describe the datasets and the data pre-processing steps.

Datasets The datasets we use are: (i) MovieLens1M from
grouplens.org, (ii) Netflix from netflixprize.com, and
(iii) Yahoo! Music from webscope.sandbox.yahoo.com.
MovieLens1M and Netflix contain movie ratings in a 1–5 scale, and
Yahoo! Music contains song ratings in a 0–100 scale.

Data Filtering To avoid entities which are less indicative as they
have too few ratings, we consider only users with at least 10 ratings
and items with at least 20 ratings. Also, to avoid users which are
noisy and unreliable we removed those with more than 300 ratings.

Data Statistics After filtering the data, MovieLens1M contained
488, 616 rates from 5, 085 users to 2, 388 items; Netflix contained
638, 343 rates from 6, 657 users to 6, 685 items; and Yahoo! Music
contained 441, 954 rates from 9, 458 users to 2, 640 items.

Obtaining Binary Interactions Since all datasets contain numeri-
cal ratings while we require binary interactions, we interpreted the
ratings as follows. We say user u provided feedback on item i if the
dataset contains a numerical rating u provided to i. Otherwise, we
say u did not provide feedback. This definition considers also low
rates as feedback. We believe this interpretation is valid since even
a low rate indicates that the user chose to interact with that item, in
contrast to items she ignored and did not provide feedback at all.

5.2 Constructing the Initial Model
We next describe how we constructed the initial latent factor model
that captures the characteristics of the users and the “old” items.

The Model To model the users and old items, we apply regularized
matrix factorization [27] where the goal is to minimize the mean
squared error. Namely, given the interactions I : U×Q→ {0, 1},
the estimated interest Ĩ : U × Q → {0, 1} (see Eq. (1), Sec. 3),
and a regularization parameter λ, the goal is to minimize:∑
u∈U
q∈Q

(
Ĩ(u, q)–I(u, q)

)2
+λ[
∑
u∈U

(||Vu||2+b2i)+
∑
q∈Q

(||Vq||2+b2q)]

(5)
where the variables are the average feedback rate, µ, the latent fac-
tor vectors, and the biases.

86

Model Training To optimize the cost function (Eq. (5)) we set the
latent factor dimension d to 10 and λ to 0.1 (these parameters were
optimized using a grid search over a validation set), and applied
stochastic gradient descent (SGD) [17]. The SGD step sizes were
determined according to the AdaGrad approach [7] that adapts the
steps based on the aggregated gradient of each factor in the vec-
tors. SGD was executed for 1000 iterations, after which further
iterations would negligibly improve the cost function.

RMSE Model for Binary Interactions Typically, in settings con-
sidering binary interactions models are optimized based on the lo-
gistic regression approach [20] that minimizes the log-loss function
instead of RMSE. We implemented both approaches to construct
the model and observed they achieved similar results for our pur-
poses. Since RMSE allows to analytically compute the new item’s
latent vector and bias (see Sec. 3), we chose it over the log-loss.

5.3 Evaluation Metrics

We next present the evaluation metrics.

RMSE Measures the root mean squared error between the esti-
mated and actual scores. RMSE was described in Eq. (2) (Sec. 3)
and considered all users in the system. However, it is common to
consider only a test set of users and we follow this approach in the
experiments. Namely, given a test set of users, U′(⊆ U), the new
item i’s interactions Ii : U′ → {0, 1} and the estimated scores

Ĩi : U
′ → {0, 1}, RMSE equals:

√
1
|U′| ·

∑
u∈U′

(Ĩi(u)− Ii(u))2.

Probability of Receiving Positive Interactions To estimate accu-
rately a new item’s latent factor vector from binary interactions it
is crucial to receive positive interactions. Positive interactions are
strong indications to the new items’ characteristics and thus having
only negative interactions is likely to result in inaccurate estimated
latent vectors. Thus, we measure the probability of revealing pos-
itive interactions, namely the fraction of new items for which the
algorithm revealed at least one positive interaction.

Number of Positive Interactions While revealing one positive in-
teraction is crucial for estimating the new item’s vector, having
multiple positive interactions is typically more desirable. Having
only few users that provided positive interactions may lead to esti-
mating a vector biased towards these users and thus the estimated
vector would not capture accurately the new item’s characteris-
tics. Moreover, an algorithm that selects on average more interested
users provides better user experience because in real recommender
systems users are unaware that they participate in exploration and
expect to receive only recommendations. Thus, we measure the
average positive interactions the algorithm reveals for new items.

5.4 Baseline Algorithms

We next describe the algorithms compared to ExcUseMe by de-
scribing their score functions required by the exploration frame-
work (none of them require auxiliary data structures). We consider
two algorithms commonly used by recommenders (Random and
Frequent Users), a state-of-the-art approach in an offline setting
(Anava et al.), and a complementary approach to ours (Distance).

Random Users are randomly picked with a probability of k/|UA|
where k is the number of users that participate in the exploration
and UA is the set of available users.

Frequent Users In this approach, users that provided more positive
interactions to “old” items (items that were already modeled) are
believed to be more likely to provide positive interactions to new
items. Thus, the score is the number of items to which the user
provided positive interactions, namely: Fs(u) =

∑
q∈Q

I(u, q).

Anava et al. This approach, proposed by [4], is an approxima-
tion algorithm for an offline setting in which all users in the rec-
ommender system may be considered and when selecting the next
user all users may be examined. This algorithm was adapted to
our online setting by defining Fs to be the function used in [4] to
select the next user: Fs(u) = 1/Trace

((
PB\uP>B\u

)−1
)

, where
B is the set of users not selected yet and PB\u is a matrix whose
columns are the latent factor vectors of the users in B \ {u}. This
approach was shown to outperform other well-known offline ap-
proaches, and thus we consider this approach as the representative
of offline approaches.

Distance This approach picks the first user randomly and after-
wards selects the user with the farthest vector from the selected
users’ vectors, namely: Fs(u) = min{||Vu − Vu′ ||2 | u′ ∈ S},
where S is the set of selected users and the distance is the L2 norm.
This approach is in some sense complementary to ExcUseMe be-
cause it explores the user space by locating the user which is the
most different from the previously selected users. This is in con-
trast to ExcUseMe that converges towards selecting users which are
very similar to each other.

5.5 Experimental Setting and Results
Here, we describe the experiments that evaluate all algorithms.

Experimental Setting In each experiment, we fix a new item i and
a budget k and let the algorithms select k candidates to learn i’s
latent vector and bias. As described in Sec. 3, users are revealed
gradually and after a user is revealed the algorithms have to decide
immediately whether to ask her for feedback on i.

Simulating Real-World Scenarios In real-world scenarios, not
only do recommendation systems have to decide immediately upon
the user arrival whether to ask for feedback, but they are also ex-
posed to only n% users. This is because they wish to model the
new item’s quickly and thus cannot wait for all users to arrive.

To simulate this, in each experiment we randomly selected n%
users, shuffled them, and let the algorithms select users from this
set of users. The values of n were 10, 25, 50, and 100. Since
we select the available users randomly, to increase the statistical
significance of the results, we repeated each experiment 15 times.

RMSE Evaluation To evaluate the estimated items’ latent vectors
and biases, we measured RMSE (Sec. 5.3). To this end, before
each experiment, 10% of the users were put aside as a test set to
compute RMSE and were not selected to the n% available users.

Figure 2 shows the RMSE obtained on the different datasets and
different values of n. The graphs show the RMSE as a function of
the budget k where each point is the average RMSE of the 200 new
items’ latent vectors and biases, where the RMSE of a single new
item is the average RMSE over the 15 repeating experiments.

Figure 2 shows that in all tested scenarios ExcUseMe outper-
forms all other approaches. The improvement of ExcUseMe over
other approaches is most significant for low budgets and when there
are more available users to consider for exploration (large n). Thus,
we conclude that (i) ExcUseMe allows a fast exploration that expe-
dites the convergence towards the new item’s latent factor vector,
and that (ii) ExcUseMe provides a score function that is adaptable
to the number of available users (n) and as this number increases,
the RMSE may only decrease. This is in contrast to other ap-
proaches which do not demonstrate this property. To illustrate it,
consider the graphs showing the RMSE of the Netflix dataset, when
the budget is k=20, and the percentage of available users is n=50
and n=100: only the ExcUseMe approach obtains a better RMSE
when there are 100% available users. These two conclusions im-
ply that recommender systems may obtain a short exploration with

87

MovieLens Netflix Music

10
%

A
va

ila
bl

e
U

se
rs

R
M

SE

25
%

A
va

ila
bl

e
U

se
rs

R
M

SE

50
%

A
va

ila
bl

e
U

se
rs

R
M

SE

10
0%

A
va

ila
bl

e
U

se
rs

R
M

SE

Budget Budget Budget

Figure 2: The RMSE value on all datasets for different percentages of available users.

ExcUseMe, both in terms of the number of available users, thus not
having to wait until enough candidates arrive, and in terms of the
budget size. In addition, ExcUseMe adapts well to the size of avail-
able users which may be beneficial for recommenders in which at
certain times (e.g., evenings) users connect more frequently and
then more users are available (i.e., n increases).

Probability of Receiving Positive Interactions We next study how
well the different algorithms succeed in selecting users that provide
positive interactions. As discussed in Sec. 5.3, having at least one
positive interaction for new items is crucial to learn their character-
istics accurately. Figure 3 shows the results for the MovieLens1M
dataset for different percentages of available users. The results for
the other datasets were similar and are thus omitted. The graphs

show the average probability of receiving at least one positive in-
teraction for the new items averaged over 15 repeating experiments.

The results indicate that ExcUseMe, Frequent, and Anava et al.
behave similarly which explains why they obtain better RMSE than
Random and Distance. In addition, as expected, the results show
that as the budget increases the probability of receiving positive in-
teractions increases consistently for all approaches. Results also in-
dicate that as the number of available users (n) increases, the prob-
ability to receive positive interactions increases for all approaches
except Random. We believe this is the result of longer learning and
selection phases in the exploration framework that help to select
better users, a property relevant to all approaches but Random.

88

10
%

A
va

ila
bl

e
U

se
rs

Pr
ob

ab
ili

ty
25

%
A

va
ila

bl
e

U
se

rs
Pr

ob
ab

ili
ty

50
%

A
va

ila
bl

e
U

se
rs

Pr
ob

ab
ili

ty
10

0%
A

va
ila

bl
e

U
se

rs
Pr

ob
ab

ili
ty

Budget

Figure 3: Probability of receiving positive interactions.

Average Number of Positive Interactions Lastly, we study the av-
erage number of positive interactions the approaches reveal for the
new items. As discussed in Sec. 5.3, revealing many positive in-
teractions is important to accurately model the new items and it
also provides better user experience. Figure 4 shows the average
number of positive interactions revealed for the new items on the
MovieLens1M dataset for different percentages of available users
(experiments on the other datasets obtained similar results).

Results indicate that ExcUseMe consistently and significantly re-
veals more positive interactions compared to all other approaches
under all budgets for all percentages of available users. Further, as

10
%

A
va

ila
bl

e
U

se
rs

#P
os

iti
ve

in
te

ra
ct

io
ns

25
%

A
va

ila
bl

e
U

se
rs

#P
os

iti
ve

in
te

ra
ct

io
ns

50
%

A
va

ila
bl

e
U

se
rs

#P
os

iti
ve

in
te

ra
ct

io
ns

10
0%

A
va

ila
bl

e
U

se
rs

#P
os

iti
ve

in
te

ra
ct

io
ns

Budget

Figure 4: Number of positive interactions for items.

the budget increases and/or when there are more candidates avail-
able, the number of positive interactions that ExcUseMe reveals in-
creases more significantly than the other approaches. Namely, Ex-
cUseMe provides better user experience than the other approaches.

In addition, we believe that the fact that ExcUseMe reveals more
positive interactions than the other approaches is the reason for
obtaining better RMSE. Specifically, this explains why ExcUseMe
outperforms Frequent and Anava et al., which demonstrated a sim-
ilar behaviour to ExcUseMe in revealing at least one positive inter-
action for new items.

89

10
0%

A
va

ila
bl

e
U

se
rs

N
an

o-
se

co
nd

s
(l

og
sc

al
e)

Budget

Figure 5: Computational Time.

Computational Complexity To evaluate the computational com-
plexity of the ExcUseMe score function, we measured the time
a single computation takes. The computational time may be af-
fected by the budget (for example, the Anava et al. and Distance
approaches base their scores on previously selected users), and thus
we measured time as a function of the budget. However, the com-
putational time is unaffected by the dataset or the number of avail-
able users and thus we only show the results on the MovieLens1M
dataset where all users are available for selection (i.e., n = 100).
Results are presented in Figure 5 that shows the average time in a
log scale when time was measured in nano-seconds. Results indi-
cate that while ExcUseMe requires longer computations compared
to Random or Frequent (as expected), it is only by a factor of less
than 4 compared to Frequent and less than 5 compared to Random.
In contrast, Distance and Anava et al. require expensive computa-
tions and their performance becomes worse as budget increases.

6 Conclusions
We presented ExcUseMe, a novel and simple algorithm for select-
ing users to cope with the item cold-start problem, an inherent prob-
lem in collaborative filtering recommender systems. ExcUseMe as-
sumes an initial model capturing the characteristics of the users
and accordingly selects the users that are most likely to be inter-
ested in the new items. To evaluate ExcUseMe, we applied it in an
online setting that captures two realistic aspects: a limited number
of available users and a limited number of users that may partici-
pate in the exploration. We compared ExcUseMe against state-of-
the-art algorithms and experimental results show that ExcUseMe is
efficient and obtains the best RMSE in all tested scenarios. In addi-
tion, ExcUseMe converges towards selecting users that are likely to
be interested in the new items, thus provides better user experience
while smartly exploring the new items.

7 References

[1] D. Agarwal and B.-C. Chen. Regression-based latent factor
models. In KDD ’09.

[2] M. Aharon, A. Kagian, Y. Koren, and R. Lempel. Dynamic
personalized recommendation of comment-eliciting stories.
In RecSys ’12.

[3] N. Aizenberg, Y. Koren, and O. Somekh. Build your own
music recommender by modeling internet radio streams. In
WWW ’12.

[4] O. Anava, S. Golan, N. Golbandi, Z. Karnin, R. Lempel,
O. Rokhlenko, and O. Somekh. Budget-constrained item

cold-start handling in collaborative filtering recommenders
via optimal design. In WWW ’15.

[5] M. Bateni, M. Hajiaghayi, and M. Zadimoghaddam.
Submodular secretary problem and extensions. ACM Trans.
Algorithms, 9(4), 2013.

[6] G. Dror, N. Koenigstein, and Y. Koren. Yahoo! music
recommendations: Modeling music ratings with temporal
dynamics and item. In RecSys ’11.

[7] J. C. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient
methods for online learning and stochastic optimization.
Journal of Machine Learning Research, 12, 2011.

[8] M. Feldman, J. Naor, and R. Schwartz. Improved
competitive ratios for submodular secretary problems
(extended abstract). In APPROX-RANDOM ’11.

[9] N. Golbandi, Y. Koren, and R. Lempel. Adaptive
bootstrapping of recommender systems using decision trees.
In WSDM ’11.

[10] N. Golbandi, Y. Koren, and R. Lempel. On bootstrapping
recommender systems. In CIKM ’10.

[11] A. Gunawardana and C. Meek. Tied boltzmann machines for
cold start recommendations. In RecSys ’08.

[12] A. Gunawardana and C. Meek. A unified approach to
building hybrid recommender systems. In RecSys ’09.

[13] A. Gupta, A. Roth, G. Schoenebeck, and K. Talwar.
Constrained non-monotone submodular maximization:
Offline and secretary algorithms. In WINE ’10.

[14] A. Kohrs and B. Mérialdo. Improving collaborative filtering
for new-users by smart object selection. In ICME ’01.

[15] Y. Koren. Factorization meets the neighborhood: a
multifaceted collaborative filtering model. In KDD ’08.

[16] Y. Koren. Collaborative filtering with temporal dynamics.
Commun. of the ACM, 53(4), 2010.

[17] Y. Koren, R. M. Bell, and C. Volinsky. Matrix factorization
techniques for recommender systems. Computer, 42(8),
2009.

[18] S.-L. Lee. Commodity recommendations of retail business
based on decision tree induction. Expert Systems with
Applications, 37(5), 2010.

[19] G. Linden, B. Smith, and J. York. Amazon. com
recommendations: Item-to-item collaborative filtering.
Internet Computing, IEEE, 7(1), 2003.

[20] P. McCullagh and J. A. Nelder. Generalized linear models
(Second edition). 1989.

[21] S.-T. Park and W. Chu. Pairwise preference regression for
cold-start recommendation. In RecSys ’09.

[22] A. Paterek. Improving regularized singular value
decomposition for collaborative filtering. In KDD ’07.

[23] M. J. Pazzani and D. Billsus. Content-based recommendation
systems. The Adaptive Web, 4321, 2007.

[24] A. M. Rashid, I. Albert, D. Cosley, S. K. Lam, S. M. McNee,
J. A. Konstan, and J. Riedl. Getting to know you: Learning
new user preferences in recommender systems. In IUI ’02.

[25] A. M. Rashid, G. Karypis, and J. Riedl. Learning preferences
of new users in recommender systems: an information
theoretic approach. SIGKDD Explor. Newsl., 10(2), 2008.

[26] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based
collaborative filtering recommendation algorithms. In
WWW ’01.

[27] G. Takacs, I. Pilaszy, B. Nemeth, and D. Tikk. Investigation
of various matrix factorization methods for large
recommender systems. In ICDMW ’08.

90

